Chemodynamic therapy (CDT), which consumes endogenous hydrogen peroxide (HO) to generate reactive oxygen species (ROS) and causes oxidative damage to tumor cells, shows tremendous promise for advanced cancer treatment. However, the rate of ROS generation based on the Fenton reaction is prone to being restricted by inadequate HO and unattainable acidity in the hypoxic tumor microenvironment. We herein report a multifunctional nanoprobe (BCGCR) integrating bimodal imaging and photothermal-enhanced CDT of the targeted tumor, which is produced by covalent conjugation of bovine serum albumin-stabilized CuS/GdO nanoparticles (NPs) with the Cy5.
View Article and Find Full Text PDFImaging technology based on novel nanomaterials is burgeoning as a potential tool for exploring various physiological processes. We herein report a fluorescent and magnetic nanoprobe (QMNP-RGD) for bimodal imaging of in vitro tumor cells. The preparation of this multifunctional nanomaterial is divided into three steps.
View Article and Find Full Text PDFSemiconductor quantum dots (QDs) possess attractive merits over traditional organic dyes, such as tunable emission, narrow emission spectra and good resistance against optical bleaching, and play a vital role in biosensing and bioimaging for cytologic diagnoses. Microfluidic technology is a potentially useful strategy, as it provides a rapid platform for tracing of disease markers. fluorescence imaging (FI) based on QDs has become popular for the analysis of complex biological processes.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2021
Detection of hydrogen peroxide is of significant importance for biological assays, and fluorescence methods are intensively reported for this purpose. Due to the highly oxidative property of this species, usually fluorescence quenching is obtained during the interactions and decreased signals are rendered. In this report, this oxidative property was adopted for an increased fluorescence signaling.
View Article and Find Full Text PDFA method for sensitive detection of nitrite is presented. It is found that the red fluorescence of gold nanoclusters (with excitation/emission maxima at 365/635 nm) is quenched by traces of iodine via etching. Free iodide is formed by oxidation of iodide by bromate anion under the catalytic effect of nitrite.
View Article and Find Full Text PDFA fluorimetric method is described for the determination of alkaline phosphatase (ALP) activity. It is based on the use of polyethyleneimine-coated silver nanoclusters (AgNCs), which display an intense blue fluorescence peaking at 450 nm (under 375 nm excitation). ALP catalyzes the dephosphorylation of the thiophosphate amifostine to generate a thiol that binds to the AgNCs and causes its fluorescence to be quenched.
View Article and Find Full Text PDFIn this report, a sensitive fluorescence detection of copper (Ⅱ) ion was developed. Although itself only a weak quencher toward gold nanocluster fluorescence, this ion functioned as a catalyst that accelerated the oxidation of iodide into iodine by a strong oxidant. The so-produced iodine quenched the nanocluster fluorescence through an efficient etching reaction, which rendered a much improved sensitivity for copper detection.
View Article and Find Full Text PDFA method is described for ratiometric fluorometric assays of HO by using two probes that have distinct response profiles. Under the catalytic action of ferrous ion, the 615 nm emission of protein-stabilized gold nanoclusters (under 365 nm photoexcitation) is quenched by HO, while an increased signal is generated with a peak at 450 nm by oxidizing coumarin with the HO/Fe(II) system to form a blue emitting fluorophore. These decrease/increase responses give a ratiometric signal.
View Article and Find Full Text PDF