Arylamine N-acetyltransferase 1 (NAT1) expression has been shown to attenuate mitochondrial function, suggesting it is a promising drug target in diseases of mitochondrial dysfunction. Here, several second-generation naphthoquinones have been investigated as small molecule inhibitors of NAT1. The results show that the compounds inhibit both and in whole cells.
View Article and Find Full Text PDFIn humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes ( and ) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal.
View Article and Find Full Text PDFAnti-cancer monoclonal antibodies often fail to provide therapeutic benefit in receptor-positive patients due to rapid endocytosis of antibody-bound cell surface receptors. High dose co-administration of prochlorperazine (PCZ) inhibits endocytosis and sensitises tumours to mAbs by inhibiting dynamin II but can also introduce neurological side effects. We examined the potential to use PEGylated liposomal formulations of PCZ (LPCZ) to retain the anti-cancer effects of PCZ, but limit brain uptake.
View Article and Find Full Text PDFDynamin II (dynII) plays a significant role in the internalization pathways of endocytic cells, by allowing membrane invaginations to "bud off". An important class of dynII inhibitors that are used clinically are phenothiazines, such as prochlorperazine (PCZ). PCZ is an antipsychotic drug but is also currently in clinical trials at higher concentrations as an adjuvant in cancer patients that increases the efficacy of monoclonal antibodies at high intravenous doses.
View Article and Find Full Text PDFThere are two human arylamine -acetyltransferases (NAT1 and NAT2) that have evolved separately and differ in their substrate specificity and tissue localization. In addition to its acetyltransferase activity, NAT1 can hydrolyze acetyl coenzyme A to coenzyme A in the presence of folate. Here, we show that NAT1 is rapidly inactivated at temperatures above 39 °C whereas NAT2 is more stable.
View Article and Find Full Text PDFPEGylated lipid nanoparticle-based Covid-19 vaccines, including Pfizer's BNT162b2 and Moderna's mRNA-1273, have been shown to stimulate variable anti-PEG antibody production in humans. Anti-PEG antibodies have the potential to accelerate the plasma clearance of PEGylated therapeutics, such as PEGylated liposomes and proteins, and compromise their therapeutic efficacy. However, it is not yet clear whether antibody titers produced by PEGylated Covid-19 vaccines significantly affect the clearance of PEGylated therapeutics.
View Article and Find Full Text PDFPurpose: Arylamine N-acetyltransferase 1 (NAT1) deficiency has been associated with drug resistance and poor outcomes in breast cancer patients. The current study aimed to investigate drug resistance in vitro using normal breast cancer cell lines and NAT1-deficient cell lines to understand the changes induced by the lack of NAT1 that resulted in poor drug response.
Methods: The response to seven chemotherapeutic agents was quantified following NAT1 deletion using CRISPR-Cas 9 in MDA-MB-231 and T-47D cells.
Human arylamine N-acetyltransferase 1 (NAT1) encodes a drug-metabolising enzyme that plays a role in chemical-associated cancer risk, cancer cell survival and mitochondrial function. Its expression and protein activity are regulated by transcriptional, translational, and post-translational processes, including microRNAs such as miR-1290. Several studies have shown the presence of multiple polyadenylation sites in the NAT1 gene.
View Article and Find Full Text PDFPEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the H-labelled liposome.
View Article and Find Full Text PDFHead-to-tail cyclized peptides are intriguing natural products with unusual properties. The PawS-Derived Peptides (PDPs) are ribosomally synthesized as part of precursors for seed storage albumins in species of the daisy family, and are post-translationally excised and cyclized during proteolytic processing. Here we report a PDP twice the typical size and with two disulfide bonds, identified from seeds of .
View Article and Find Full Text PDFPegylated liposomal doxorubicin (PLD) is widely utilised in cancer chemotherapy, but exhibits large inter-individual pharmacokinetic variability and sex differences in plasma clearance. Population pharmacokinetic modelling has suggested PLD plasma clearance correlates with peripheral monocyte counts, while sex hormones are known to affect endocytosis and phagocytosis in mononuclear cells. This study investigated whether sex hormones affect the uptake of PLD by human monocytes and macrophages in vitro.
View Article and Find Full Text PDFTissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies.
View Article and Find Full Text PDFPurpose: The aim of this work was to identify whether biochemical and physiological sources of mAb pharmacokinetic sex-effects could be identified in the rat model where target-mediated disposition is avoided.
Methods: Plasma and lymphatic pharmacokinetics of the humanised anti-EGFR antibody cetuximab, along with potential physiological and biochemical drivers of pharmacokinetic sex differences, were examined in male and female rats. Cetuximab was used as a model mAb since plasma clearance is slower in female patients.
Arylamine -acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that also has a role in cancer cell growth and metabolism. Recently, it was reported that NAT1 undergoes lysine acetylation, an important post-translational modification that can regulate protein function. In the current study, we use site-directed mutagenesis to identify K and K as major sites of lysine acetylation in the NAT1 protein.
View Article and Find Full Text PDFSulfotransferase (SULT) 4A1 is a brain-selective sulfotransferase-like protein that has recently been shown to be essential for normal neuronal development in mice. In the present study, SULT4A1 was found to colocalize with SULT1A1/3 in human brain neurons. Using immunoprecipitation, SULT4A1 was shown to interact with both SULT1A1 and SULT1A3 when expressed in human cells.
View Article and Find Full Text PDFReducted arylamine N-acetyltransferase (NAT1) in breast cancers is associated with poor patient survival. NAT1 has also been associated with changes in cancer cell survival and invasion both and . Here, we report the effects of NAT1 in cancer cell invasion by addressing its role in adherence, migration, and invasion .
View Article and Find Full Text PDFArylamine -acetyltransferase 1 (NAT1) is a drug-metabolizing enzyme that influences cancer cell proliferation and survival. However, the mechanism for these effects is unknown. Because of previous observations that NAT1 inhibition decreases invasiveness, we investigated the expression of the metalloproteinase matrix metalloproteinase 9 (MMP9) in human breast cancer samples and in cancer cells.
View Article and Find Full Text PDFLymphatic metastasis plays an important role in cancer progression and prognosis. However, conventional small-molecule chemotherapy drugs inefficiently access the lymphatic system, making the effective eradication of lymphatic metastases difficult without dose-limiting toxicity. Various formulation and nanomedicine-based approaches can be used to significantly enhance the trafficking of small-molecule, peptide and protein drugs toward the lymphatic system to enhance drug exposure at sites of lymphatic cancer growth.
View Article and Find Full Text PDFHuman arylamine N-acetyltransferase 1 (NAT1) has been widely reported to affect cancer cell growth and survival and recent studies suggest it may alter cell metabolism. In this study, the effects of NAT1 deletion on mitochondrial function was examined in 2 human cell lines, breast carcinoma MDA-MB-231 and colon carcinoma HT-29 cells. Using a Seahorse XFe96 Flux Analyzer, NAT1 deletion was shown to decrease oxidative phosphorylation with a significant loss in respiratory reserve capacity in both cell lines.
View Article and Find Full Text PDFSulfotransferase 4A1 (SULT4A1) is a sulfotransferase-like protein that is highly conserved between species. In human tissues, there are two transcripts, one that produces a full-length protein and one that produces an unstable truncated protein. The second transcript, which includes a pseudo-exon between exons 6 and 7 (6p), is widely expressed, whereas the first is more restricted.
View Article and Find Full Text PDFIn the present study, a screen of adenosine analogs as potential modulators of arylamine-N-acetyltransferase 1 activity identified ATP as an inhibitor within its range of physiological concentrations. Kinetically, ATP was a non-competitive inhibitor with respect to the acetyl acceptor but a competitive inhibitor with respect to the acetyl donor (acetyl-coenzyme A). In silico modelling predicted that ATP bound within the active site cleft arranged with the triphosphate group in close proximity to arginine 127.
View Article and Find Full Text PDFBackground: Arylamine N-acetyltransferase 1 (NAT1) is a drug metabolizing enzyme that has been associated with cancer cell proliferation in vitro and with survival in vivo. NAT1 expression has been associated with the estrogen receptor and it has been proposed as a prognostic marker for estrogen receptor positive cancers. However, little is known about the distribution of NAT1 mRNA across an entire patient population or its effects on outcomes.
View Article and Find Full Text PDFHuman arylamine N-acetyltransferase 1 (NAT1) has been associated with cancer cell growth and invasion, but the underlying molecular mechanisms remain unknown. NAT1 is located on the short arm of chromosome 8 (8p21), a region that is commonly deleted in colon cancer. Previously, it was reported that HT-29 colon cancer cells, which have a large deletion at 8p21-22, show marked morphological changes, increased E-cadherin expression and altered cell-cell contact inhibition following down-regulation of NAT1 with shRNA.
View Article and Find Full Text PDFThe cytosolic aryl sulfotransferase genes SULT1A3 and SULT1A4 are located on chromosome 16p11.2 in a region of chromosomal instability. SULT1A3/4 are important enzymes in the metabolism of catecholamines linked to neurodegenerative diseases such as Parkinson's and Alzheimer's.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2016
The functional diversity of proteins is a major factor determining the complexity of cells and tissues. Both translational and post-translational modifications contribute to this diversity. Recently, protein unfolding and refolding has been recognised as another mechanism for diversity by unmasking buried or cryptic sequences (epitopes) that possess physiological functions.
View Article and Find Full Text PDF