As the requirements for wearable electronic devices continue to increase, the development of bendable and foldable supercapacitors is becoming critical. However, it is still challenging to design free-standing electrodes with flexibility and high electrical conductivity. Herein, using carboxymethylcellulose (CMC) as the biological template and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as the electroactive material, a flexible CMC/PEDOT:PSS membrane with a cross-linked mesh structure was firstly synthesized by a facile in-situ polymerization and vacuum filtration process.
View Article and Find Full Text PDFRecent studies have shown that Ti-based MXene has great potential for electrochemical energy storage applications, including Li-ion batteries and micro-supercapacitors. However, self-stacking and weak interlayer interactions lead to poor electrochemical properties. Herein, a simple one-step vacuum filtration method was used to prepare a MXene/carboxymethylcellulose/carbon nanotube (TiCT/CMC/CNT) hybrid membrane.
View Article and Find Full Text PDFThis work demonstrates a facile and effective strategy for the preparation of a reduced graphene oxide/carboxymethylcellulose-polyaniline (RGO/CMC-PANI) hybrid film electrode. Specifically, through the hydrogen bonding interaction between -OH of CMC molecules and -NH of aniline monomer, PANI grows in an ordered manner on the surface of CMC, which effectively alleviates the structural collapse of PANI during the continuous charge/discharge process. After compounding with RGO, CMC-PANI bridges adjacent RGO sheets to form a complete conductive path, and opens the gap between RGO sheet layers to obtain fast ion channels.
View Article and Find Full Text PDF