Publications by authors named "Minaxi S Gami"

In C. elegans, insulin signaling affects development, lifespan and stress resistance. Several studies have shown that insulin signaling affects lifespan in an endocrine-like manner from different cells, while the major downstream target of insulin, the FOXO transcription factor encoded by daf-16, may act preferentially in intestinal cells to prolong lifespan.

View Article and Find Full Text PDF

Background: In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1.

View Article and Find Full Text PDF

Much excitement has arisen from the observation that decrements in insulin-like signaling can dramatically extend lifespan in the nematode, Caenorhabditis elegans, and fruitfly, Drosophila melanogaster. In addition, there are tantalizing hints that the IGF-I pathway in mice may have similar effects. In addition to dramatic effects on lifespan, invertebrate insulin-like signaling also promotes changes in stress resistance, metabolism and development.

View Article and Find Full Text PDF

Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits on behavior have not been clearly defined.

View Article and Find Full Text PDF