Publications by authors named "Minan Tang"

The large-scale integration of offshore wind power into the power grid has brought serious challenges to the power system power quality. Aiming at the problem of power quality disturbance detection and classification, this paper proposes a novel algorithm based on fast S-transform and crested porcupine optimizer (CPO) optimized CNN. Firstly, the intrinsic mechanism and waveform characteristics of offshore wind power grid-connected disturbances are analyzed, and the simulated disturbance signals are feature extracted and time-frequency diagrams are obtained by fast S-transform.

View Article and Find Full Text PDF

Nonholonomic constrained wheeled mobile robot (WMR) trajectory tracking requires the enhancement of the ground adaptation capability of the WMR while ensuring its attitude tracking accuracy, a novel dual closed-loop control structure is developed to implement this motion/force coordinated control objective in this paper. Firstly, the outer-loop motion controller is presented using Laguerre functions modified model predictive control (LMPC). Optimised solution condition is introduced to reduce the number of LMPC solutions.

View Article and Find Full Text PDF

In light of the issue that the vibration signal from an axle-box bearing collected during the operation of an electric multiple unit (EMU) is seriously polluted by background noise, which leads to difficulty in identifying fault characteristic frequency, this paper proposes a resonance-based sparse signal decomposition (RSSD) and variational mode decomposition (VMD) method based on sparrow search algorithm (SSA) optimization to extract the fault characteristic frequency of the bearing. Firstly, the RSSD method is utilized to decompose the signal based on the obtained optimal combination of quality factors, resulting in the optimal low-resonance component with periodic fault information. Then, the VMD method is performed on this low-resonance component.

View Article and Find Full Text PDF

This study addresses the ongoing challenge for learning-based methods to achieve accurate object detection in foggy conditions. In response to the scarcity of foggy traffic image datasets, we propose a foggy weather simulation algorithm based on monocular depth estimation. The algorithm involves a multi-step process: a self-supervised monocular depth estimation network generates a relative depth map and then applies dense geometric constraints for scale recovery to derive an absolute depth map.

View Article and Find Full Text PDF