Significance: The advancement of multichannel functional near-infrared spectroscopy (fNIRS) has enabled measurements across a wide range of brain regions. This increase in multiplicity necessitates the control of family-wise errors in statistical hypothesis testing. To address this issue, the effective multiplicity ( ) method designed for channel-wise analysis, which considers the correlation between fNIRS channels, was developed.
View Article and Find Full Text PDFWhile a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD), an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS), which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level.
View Article and Find Full Text PDFNoninvasive localization of an epileptogenic zone is a fundamental step for presurgical evaluation of epileptic patients. Here, we applied long-term simultaneous functional near-infrared spectroscopy (fNIRS)/electroencephalogram (EEG) monitoring for focus diagnosis in patients with mesial temporal lobe epilepsy (MTLE). Six MTLE patients underwent long-term (8-16 h per day for 4 days) fNIRS/EEG monitoring for the occurrence of spontaneous seizures.
View Article and Find Full Text PDFRecent advances in multichannel functional near-infrared spectroscopy (fNIRS) allow wide coverage of cortical areas while entailing the necessity to control family-wise errors (FWEs) due to increased multiplicity. Conventionally, the Bonferroni method has been used to control FWE. While Type I errors (false positives) can be strictly controlled, the application of a large number of channel settings may inflate the chance of Type II errors (false negatives).
View Article and Find Full Text PDFAn increasing number of functional near-infrared spectroscopy (fNIRS) studies utilize a general linear model (GLM) approach, which serves as a standard statistical method for functional magnetic resonance imaging (fMRI) data analysis. While fMRI solely measures the blood oxygen level dependent (BOLD) signal, fNIRS measures the changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) signals at a temporal resolution severalfold higher. This suggests the necessity of adjusting the temporal parameters of a GLM for fNIRS signals.
View Article and Find Full Text PDFFunctional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals.
View Article and Find Full Text PDFThere is an increasing need for a pig model for use in functional brain studies, but a system for determining precise stereotactic coordinates has yet to be developed. Thus, we devised a frameless navigation system for stereotactic positioning, and measured coordinates for the rostral region and the primary somatosensory cortex in the pig brain. Raw coordinates for somatic evoked potential recordings were obtained by passive optical tracking.
View Article and Find Full Text PDFIn order to investigate how the diaphragm and trunk muscles are recruited during various voluntary movements, we recorded EMG signals and video images simultaneously and analyzed EMGs of the diaphragm and trunk muscles during the voluntary movements that required trunk muscles. During trunk movements, the duration of the diaphragmatic activity became irregular and the intensity of the activity increased. Further analysis revealed that the diaphragmatic activities were consisted of two components, such as respiratory and non-respiratory activities during voluntary movements.
View Article and Find Full Text PDFThe diaphragm is an important inspiratory muscle, and is also known to participate in the postural function. However, the activity of the diaphragm during voluntary movements has not been fully investigated in awake animals. In order to investigate the diaphragmatic activity during voluntary movements such as extending or rotating their body, we analyzed the electromyogram (EMG) of the diaphragm and trunk muscles in the cat using a technique for simultaneous recordings of EMG signals and video images.
View Article and Find Full Text PDF