Publications by authors named "Mina V Petkova"

Dystrophin is essential for muscle health: its sarcolemmal absence causes the fatal, X-linked condition, Duchenne muscular dystrophy (DMD). However, its normal, spatial organization remains poorly understood, which hinders the interpretation of efficacy of its therapeutic restoration. Using female reporter mice heterozygous for fluorescently tagged dystrophin (), we here reveal that dystrophin distribution is unexpectedly compartmentalized, being restricted to myonuclear-defined sarcolemmal territories extending ~80 µm, which we called "basal sarcolemmal dystrophin units (BSDUs).

View Article and Find Full Text PDF

The mechanisms involved in malignant transformation of mature B and T lymphocytes are still poorly understood. In a previous study, we compared gene expression profiles of the tumor cells of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) to their normal cellular counterparts and found the basic leucine zipper protein ATF-like 3 (BATF3) to be significantly upregulated in the tumor cells of both entities. To assess the oncogenic potential of BATF3 in lymphomagenesis and to dissect the molecular interactions of BATF3 in lymphoma cells, we retrovirally transduced murine mature T and B cells with a BATF3-encoding viral vector and transplanted each population into Rag1-deficient recipients.

View Article and Find Full Text PDF

Background: Dystrophin is a rod-shaped cytoplasmic protein that provides sarcolemmal stability as a structural link between the cytoskeleton and the extracellular matrix via the dystrophin-associated protein complex (DAPC). Mutations in the dystrophin-encoding DMD gene cause X-linked dystrophinopathies with variable phenotypes, the most severe being Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting and fibrosis. However, dystrophin deficiency does not only impair the function of skeletal and heart muscle but may also affect other organ systems such as the brain, eye, and gastrointestinal tract.

View Article and Find Full Text PDF

Background: Congenital muscular dystrophies (CMD) with hypoglycosylation of α-dystroglycan are clinically and genetically heterogeneous disorders that are often associated with brain malformations and eye defects. Presently, 16 proteins are known whose dysfunction impedes glycosylation of α-dystroglycan and leads to secondary dystroglycanopathy.

Objective: To identify the cause of CMD with secondary merosin deficiency, hypomyelination and intellectual disability in two siblings from a consanguineous family.

View Article and Find Full Text PDF