Publications by authors named "Mina Thon"

Insulin is secreted by the pancreatic β-cells and regulates glucose uptake. Endoplasmic reticulum (ER) stress is known to induce insulin resistance. Identifying novel compounds, which can ameliorate ER stress and insulin resistance may be beneficial in the treatment of diabetes.

View Article and Find Full Text PDF

Leptin plays an important role in energy intake and body weight homeostasis. Leptin is secreted mainly from white adipose tissue and circulates in the bloodstream, inhibiting food intake by activating the leptin receptor expressed on hypothalamic neurons. Recent studies have demonstrated leptin resistance as the main factor involved in the development of obesity.

View Article and Find Full Text PDF

Insensitivity to the antiobesity hormone, leptin, has been suggested to be involved in the pathogenesis of obesity. However, the pathological mechanisms underlying the development of leptin resistance are not well-understood. This study aimed to examine the pathological mechanisms of leptin resistance in obesity.

View Article and Find Full Text PDF

Objective: The exposure of organelles, such as the endoplasmic reticulum (ER), Golgi apparatus (GA), and lysosomes, to stress activates death mechanisms. Recently, telomerase reverse transcriptase (TERT) has been shown to be involved in cell survival. However, the relationship between TERT and the stress responses is still unclear.

View Article and Find Full Text PDF

The lack of response to leptin's actions in the brain, "leptin resistance," is one of the main causes of the pathogenesis of obesity. However, although high-fat diets affect sensitivity to leptin, the underlying mechanisms of leptin resistance are still an enigma. Here we examined the effect of excess saturated fatty acids (SFAs) on leptin signaling in human neuronal cells.

View Article and Find Full Text PDF

Obesity has emerged as one of the most burdensome conditions in modern society. In this context, understanding the mechanisms controlling food intake is critical. At present, the adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin are considered the principal anorexigenic hormones.

View Article and Find Full Text PDF

Leptin, an adipocyte-derived hormone, centrally regulates energy homeostasis. Overlaps in the regulation of glucose and energy homeostasis have been reported between leptin and insulin. However, the effects of insulin on leptin's actions in the central nervous system (CNS) have not yet been elucidated in detail.

View Article and Find Full Text PDF

Due to its anti-obesity effects, an adipocyte-derived hormone, leptin, has become important for the treatment of obesity. However, most obese subjects are in a state of leptin resistance, and endoplasmic reticulum (ER) stress is suggested to be involved in the pathophysiology of leptin resistance. Dehydroascorbic acid (DHAA), an oxidized form of vitamin C, was found to be increased in diabetes.

View Article and Find Full Text PDF

Leptin is a circulating hormone that plays a critical role in regulating energy expenditure and food intake. Evidence to suggest the involvement of endoplasmic reticulum (ER) stress in the development of obesity is increasing. To adapt against ER stress, cells trigger the unfolded protein response (UPR).

View Article and Find Full Text PDF