Nucleic acid medicines are a highly attractive modality that act in a sequence-specific manner on target molecules. To date, 21 such products have been approved by the Food and Drug Administration. However, the development of nucleic acid medicines continues to face various challenges, including tissue and cell targeting as well as intracellular delivery.
View Article and Find Full Text PDFIn this study, the effects of incorporating arginine-modified peptide into the structure of discshaped bicelles were investigated. Characterization of bicellar system was conducted using different techniques, including dynamic light scattering (DLS), zeta potential, cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). Bicelle skin permeability as drug carriers was also evaluated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Pirarubicin (THP) shows more rapid intracellular uptake, more effective antitumor activity, and less cardiac toxicity, compared to doxorubicin. However, THP is distributed to both tumor and normal tissues indiscriminately. This study aimed to develop a nanosuspension to deliver THP to tumor tissues more efficiently.
View Article and Find Full Text PDFHepatitis is an inflammation of the liver caused by the inadequate elimination of reactive oxygen species (ROS) derived from Kupffer cells. Edaravone is clinically used as an antioxidant but shows poor liver distribution. Herein, we report on the design of a Kupffer cell-oriented nanoantioxidant based on a disulfide cross-linked albumin nanoparticle containing encapsulated edaravone (EeNA) as a therapeutic for the treatment of hepatitis.
View Article and Find Full Text PDFThe stratum corneum (SC) consists of a lipid layer that forms two types of lamellar structures: short lamellar (S-La) and long lamellar (L-La). It has been reported that S-La contains water phases in the hydrophilic region of the lipids, and that it may play an important role in regulating the water content of the SC. The amount of water in the SC can affect how a drug carrier permeates through the intercellular lipid pathway.
View Article and Find Full Text PDFChitosan is a natural polysaccharide with the advantageous qualities of biocompatibility and biodegradability, and it has recently been spotlighted as a soft material for a sustainable society. Advantages such as these are in demand for application in various biomaterials. Although extensive studies have been conducted on the preparation of chitosan films, overcoming the problems of weak mechanical properties remains a significant barrier.
View Article and Find Full Text PDFA simple strategy for synthesizing supramolecular hybrids was developed for the preparation of bioavailable nanohybrid photosensitizers by assembling visible-light-sensitive Pt(II) meso-tetrakis(4-carboxyphenyl)porphyrinporphyrin (PtTCPP)/tomatine analogues. The hybrids were self-assembled into nanofibrous or nanosheet structures approximately 3-5 nm thick and several micrometers wide. α-Tomatine generated a unique fibrous vesicle nanostructure based on intermolecular interactions, while dehydrotomatine generated nanosheet structures.
View Article and Find Full Text PDFThe penetration mechanism of choline chloride-glycerol deep eutectic solvent (DES) through the stratum corneum (SC) as a potential solvent for a novel enhancer of protein penetration into the skin was investigated in a wide and small angle X-ray diffraction study. We found that DES penetrated through intercellular lipids but not the corneocytes. DES seemed to extract a portion of lipids of the short lamellae in the SC.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
February 2021
Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery.
View Article and Find Full Text PDFA hexagonal cobalt(ii) metallacycle and its "lipid packaged" derivatives, [Co(R-bisterpy)]X (R = H, OCH, OCH; X = BF, C-Glu), have been synthesized and characterized. The compounds incorporating BF anions formed sphere-like aggregates while the compounds with C-Glu lipid anions gave double-layered honeycomb architectures composed of hexagonal stacked tubular structures, which exhibit spin crossover behaviour.
View Article and Find Full Text PDFPaclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin.
View Article and Find Full Text PDFMicroemulsions (MEs) containing deep eutectic solvents (DESs) and water in the inner phase for use in transdermal delivery of poorly soluble drugs were prepared using a mixture of polyoxyethylene sorbitan monooleate (Tween-80) and sorbitan laurate (Span-20) as surfactants. We investigated the effects of the ratios of surfactant (Tween-80/Span-20) and solvents (DES components/water) on the ME structure determined by the analysis of small-angle X-ray scattering profiles with the core-corona model. Tween-80 with an unsaturated long alkyl chain induced a structural transition of MEs from a sphere to a cylinder.
View Article and Find Full Text PDFLiposomes are clinically used in drug delivery, but loading hydrophobic substances is limited to the hydrophobic space of a lipid membrane, despite the fact that it is favorable to encapsulate substances into the inner aqueous core of liposome, from a drug stability of view. We report herein on the preparation of a liposome with bovine serum albumin encapsulated (BSA-liposome). Using this system, it is possible to encapsulate hydrophobic drugs in the inner aqueous core of the liposome based on the hypothesis that the water solubility of hydrophobic drugs is increased when bound to albumin.
View Article and Find Full Text PDF