Rice is a staple crop providing a significant portion of the global food supply. It is then crucial to develop strategies for breeding high-yield cultivars to meet global food security challenges, including the UN's zero-hunger goal. In this study, QTL mapping was employed to pinpoint key genomic regions linked to traits influencing rice yield, with a focus on panicle structure-a critical determinant of grain number.
View Article and Find Full Text PDFRice blast is a destructive fungal disease affecting rice plants at various growth stages, significantly threatening global yield stability. Development of resistant rice cultivars stands as a practical means of disease control. Generally, association mapping with a diversity panel powerfully identifies new alleles controlling trait of interest.
View Article and Find Full Text PDFThe present study aimed to investigate the contents of glucosinolates (GSLs) and carotenoids in eleven varieties of Chinese cabbage in relation to the expression level of the important transcription factors. MS and HPLC analysis identified the presence of 13 GSLs (progoitrin, sinigrin, glucoalyssin, gluconapoleiferin, gluconapin, glucocochlearin, glucobrassicanapin, glucoerucin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and gluconasturtiin) and four carotenoids (lutein, zeaxanthin, -carotene and -carotene). GSL contents were varied among the different cabbage varieties.
View Article and Find Full Text PDFis a polyploid species with phenotypically diverse cultivated subspecies. Glucosinolates (GSLs) are secondary metabolites that contribute to anticarcinogenic activity and plant defense in Brassicaceae. Previously, complete coding sequences of 13 transcription factors (TFs) related to GSL biosynthesis were identified in the genome.
View Article and Find Full Text PDFBackground: Expressed sequence tag (EST)-based markers are preferred because they reflect transcribed portions of the genome. We report the development of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers derived from transcriptome sequences in cabbage, and their utility for map construction.
Results: Transcriptome sequences were obtained from two cabbage parental lines, C1184 and C1234, which are susceptible and resistant to black rot disease, respectively, using the 454 platform.
A novel dominant resistance gene, TuRB07, was found to confer resistance to an isolate of TuMV strain C4 in B. rapa line VC1 and mapped on the top of chromosome A06. The inheritance of resistance to Turnip mosaic virus in Brassica rapa was investigated by crossing the resistant line, VC1 with the susceptible line, SR5, and genotyping and phenotyping diverse progenies derived from this cross.
View Article and Find Full Text PDFQuantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. The VCS3M-DH population showed wide and continuous variation in callus induction and shoot regeneration.
View Article and Find Full Text PDFWe report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication.
View Article and Find Full Text PDFBrassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC).
View Article and Find Full Text PDFAs a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific.
View Article and Find Full Text PDFBackground: The species Brassica rapa includes important vegetable and oil crops. It also serves as an excellent model system to study polyploidy-related genome evolution because of its paleohexaploid ancestry and its close evolutionary relationships with Arabidopsis thaliana and other Brassica species with larger genomes. Therefore, its genome sequence will be used to accelerate both basic research on genome evolution and applied research across the cultivated Brassica species.
View Article and Find Full Text PDFBackground: Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution.
View Article and Find Full Text PDFBackground: In view of the immense value of Brassica rapa in the fields of agriculture and molecular biology, the multinational Brassica rapa Genome Sequencing Project (BrGSP) was launched in 2003 by five countries. The developing BrGSP has valuable resources for the community, including a reference genetic map and seed BAC sequences. Although the initial B.
View Article and Find Full Text PDFGlucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes.
View Article and Find Full Text PDFGenome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold (4 degrees C), salt (250 mM NaCl), and drought (air-dry) treated B.
View Article and Find Full Text PDFA complete genome sequence provides unlimited information in the sequenced organism as well as in related taxa. According to the guidance of the Multinational Brassica Genome Project (MBGP), the Korea Brassica Genome Project (KBGP) is sequencing chromosome 1 (cytogenetically oriented chromosome #1) of Brassica rapa. We have selected 48 seed BACs on chromosome 1 using EST genetic markers and FISH analyses.
View Article and Find Full Text PDFBackground: The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B.
View Article and Find Full Text PDFWide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in B. rapa using multiple populations.
View Article and Find Full Text PDFWe have developed a display system using a unique sequence of terminal repeat retrotransposon in miniature (TRIM) elements, which were recently identified from gene-rich regions of Brassica rapa. The technique, named TRIM display, is based on modification of the AFLP technique using an adapter primer for the restriction fragments of BfaI and a primer derived from conserved terminal repeat sequences of TRIM elements, Br1 and Br2. TRIM display using genomic DNA produced 50-70 bands ranging from 100 to 700 bp in all the species of the family Brassicaceae.
View Article and Find Full Text PDFElucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm.
View Article and Find Full Text PDF