Publications by authors named "Mina Izadjoo"

Introduction: In light of the COVID-19 (Coronovirus Disease 2019) pandemic, the use of personal protective equipment has become essential to reduce viral transmission and maintain public health. Viruses, particularly human coronavirus and influenza, pose significant challenges because of their various transmission routes. UMF Corporation's innovation, Micrillon, aims to address these challenges by creating durable, antiviral technology for textiles without harmful chemicals, reducing viral transmission risks.

View Article and Find Full Text PDF

The continued proliferation of superbugs in hospitals and the coronavirus disease 2019 (COVID-19) has created an acute worldwide demand for sustained broadband pathogen suppression in households, hospitals, and public spaces. In response, we have created a highly active, self-sterilizing copper configuration capable of inactivating a wide range of bacteria and viruses in 30-60 seconds. The highly active material destroys pathogens faster than any conventional copper configuration and acts as quickly as alcohol wipes and hand sanitizers.

View Article and Find Full Text PDF

Objective: To develop and evaluate a simple platform technology for developing static biofilms in a 96-well microtitre plate for various downstream applications. The technology allows monitoring of growth rate, biofilm formation and quantifying biofilm biomass by using crystal violet (CV) and safranin O (SO) staining over seven-day time periods for pathogens including clinical isolates most commonly associated with hard-to-treat wound infections.

Method: A total of 157 bacteria including and spp.

View Article and Find Full Text PDF

Cold atmospheric plasmas (CAP) have been used in multiple medical fields and have become a promising medical technology. CAP-generating devices are safe and easy to operate and can now be manufactured at a low cost due to advancements in electronics and microchips. A primary application of CAP is as a broad-spectrum antimicrobial technology.

View Article and Find Full Text PDF

Wound infections are a common complication of combat-related injuries that significantly increase morbidity and mortality. Multi-drug resistant (MDR) organisms and their associated biofilms play a significant role in the pathogenicity and chronicity of wound infections. A critical barrier to progress in the treatment of traumatic wounds is the need for broad spectrum antimicrobials that are effective against biofilms and compatible with topical delivery.

View Article and Find Full Text PDF

This study focused on a clinically relevant healthcare problem in the military: acute soft tissue wounds, or blisters. The trial was a prospective, controlled, randomized two-arm study evaluating the efficacy of a bioelectric dressing, Procellera®, applied topically two to three times per week for 2 weeks to blisters developed in Ranger trainees during training at Fort Benning, Georgia. A total of 80 US Army Ranger recruits with blister wounds below the knee were randomly assigned to one of two treatment groups (n = 40/group).

View Article and Find Full Text PDF

Novel approaches including nonpharmacological methodologies for prevention and control of microbial pathogens and emerging antibiotic resistance are urgently needed. Procellera is a wound care device consisting of a matrix of alternating silver (Ag) and zinc (Zn) dots held in position on a polyester substrate with a biocompatible binder. This electroceutical medical device is capable of generating a direct current voltage (0.

View Article and Find Full Text PDF

Genus Candida covers more than 50 species, half of which can cause infections in humans. Some of the Candida species exhibit drug resistance; therefore, there is an urgent need for rapid and accurate differentiation for rendering appropriate and effective management. Here, we report a new methodology employing real-time polymerase chain reaction (RTPCR) and melting temperature analyses (MTA) procedures.

View Article and Find Full Text PDF

Silver-based wound dressings have been developed for the control of bioburden in wounds. However, the popularity and extensive use of silver-based dressings has been associated with emerging microbial resistances to silver. In this study we examined in vitro antibacterial efficacy of a bioelectric dressing containing silver and zinc against various wound pathogens.

View Article and Find Full Text PDF

High-affinity antibodies are crucial for development of monoclonal antibody (MAb)-based therapeutics for human diseases. Many new detailed methods for affinity maturation have been developed to improve MAb qualities by site-directed mutagenesis, chain shuffling, and error-prone PCR. Site-directed mutagenesis on hotspots in variable heavy (VH) complementary-determining region (CDR) 3 is a commonly used method for improving therapeutic potency and efficacy of targeted MAbs.

View Article and Find Full Text PDF

Monoclonal antibodies (MAbs) produced by a single clone of cells with homogeneous binding specificity for an antigenic determinant have been used in diagnostics and therapeutics. Many new methods have been devised by scientists for making hybridomas and MAbs. The three major steps for producing MAbs are immunization, immortalization, and isolation.

View Article and Find Full Text PDF

CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B.

View Article and Find Full Text PDF

Staphyloxanthin is a virulence factor which protects Staphylococcus aureus in stress conditions. We isolated two pigment variants of S. aureus and one strain of Pseudomonas aeruginosa from a single wound infection.

View Article and Find Full Text PDF

Management of skin wound infections presents a serious problem in the clinic, in the community, and in both civilian and military clinical treatment centers. Staphylococcus aureus is one of the most common microbial pathogens in cutaneous wounds. Peptide-morpholino oligomer (PMO) conjugates targeted to S.

View Article and Find Full Text PDF

Background: The transition from normal epithelium to adenoma and, to invasive carcinoma in the human colon is associated with acquired molecular events taking 5-10 years for malignant transformation. We discovered CCAT1, a non-coding RNA over-expressed in colon cancer (CC), but not in normal tissues, thereby making it a potential disease-specific biomarker. We aimed to define and validate CCAT1 as a CC-specific biomarker, and to study CCAT1 expression across the adenoma-carcinoma sequence of CC tumorigenesis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major burden to healthcare systems worldwide accounting for approximately one million of new cancer cases worldwide. Even though, CRC mortality has decreased over the last 20 years, it remains the third most common cause of cancer-related mortality, accounting for approximately 600,000 deaths in 2008 worldwide. A multitude of risk factors have been linked to CRC, including hereditary factors, environmental factors and inflammatory syndromes affecting the gastrointestinal tract.

View Article and Find Full Text PDF

It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues.

View Article and Find Full Text PDF

Brucellosis is a zoonotic infection transmitted from animals to human by ingestion of infected food products, direct contact with an infected animal, or inhalation of aerosols. Brucella infection-induced osteomyelitis may present only with nonspecific clinical and radiographic findings, mild elevations in serum inflammatory markers, as well as nonspecific histological changes. We studied a case of an Iraqi war veteran with multifocal vertebral body and left iliac bone lesions on radio nucleotide scans and magnetic resonance imaging, clinically suspected osteomyelitis possibly because of Brucella.

View Article and Find Full Text PDF

Burkholderia pseudomallei and B. mallei are two highly pathogenic bacteria responsible for melioidosis and glanders, respectively. Our laboratory developed hydrolysis probe-based real-time polymerase chain reaction assays targeting type three secretion system (TTS) and transposase family protein (TFP) of B.

View Article and Find Full Text PDF

Background: Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors' screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli.

View Article and Find Full Text PDF

Carcinogenesis is believed to be a multi-step process, progressing sequentially from normal to hyperplastic, to in situ, and to invasive stages. A number of studies, however, have detected malignancy-associated alterations in normal or hyperplastic tissues. As the molecular profile and clinical features of these tissues have not been defined, the authors invited several well-recognized pathologist, oncologists, biologist, surgeons, and molecular biologist to offer their opinion on: (1) whether these tissues belong to a previously unrevealed malignant entity or focal alterations with no significant consequence? (2) whether these alterations are linked to early onset of cancer or cancer of unknown primary site, and (3) how to further define these lesions?

View Article and Find Full Text PDF

The human breast lobular and ductal structures and the derived tumors from these structures differ substantial in their morphology, microenvironment, biological presentation, functions, and clinical prognosis. Based on these differences, we have proposed that pre-invasive lobular tumors may progress to invasive lesions through "in situ malignant transformation", in which the entire myoepithelial cell layer within a given lobule or lobular clusters undergoes extensive degeneration and disruptions, which allows the entire epithelial cell population associated with these myoepithelial cell layers directly invade the stroma or vascular structures. In contrast, pre-invasive ductal tumors may invade the stroma or vascular structures through "progenitor-mediated cell budding", in which focal myoepithelial cell degeneration-induced aberrant leukocyte infiltration causes focal disruptions in the tumor capsules, which selectively favor monoclonal proliferation of the overlying tumor stem cells or a biologically more aggressive cell clone.

View Article and Find Full Text PDF

To improve anti-Burkholderia monoclonal antibody (MAb) binding affinity, six single chain variable fragments (scFvs) constructed previously were used as scaffolds to construct large highly-diversified phage-displayed mouse scFv random and domain libraries. First, we employed random mutagenesis to introduce random point mutations into entire variable regions, generating six random libraries. Additionally, the oligonucleotide-directed mutagenesis was targeted on complementarity-determining region 3 (CDR3) from each variable region of heavy (VH) and light chains (VL) derived from six scFvs, and generated eighteen domain libraries including six VH CDR3, six VL CDR3, and six combined VH/VL CDR3 mutated domains, respectively.

View Article and Find Full Text PDF

Burkholderia pseudomallei (BP) and B. mallei (BM) are closely related gram-negative, facultative anaerobic bacteria which cause life-threatening melioidosis in human and glanders in horse, respectively. Our laboratory has previously generated and characterized more than 100 mouse monoclonal antibodies (MAbs) against BP and BM, according to in vitro and in vivo assay.

View Article and Find Full Text PDF

Neurobrucellosis has been reported to cause lesions in a number of different locations in the central nervous system. Histologically or radiologically, these lesions were consistent with an infection. In response to parents who believed their child's brain tumor, histologically typical of medulloblastoma, was in reality neurobrucellosis, formalin-fixed paraffin-embedded tumor tissue from the medulloblastoma was sectioned, DNA extracted, and tested by polymerase chain reaction (PCR).

View Article and Find Full Text PDF