Publications by authors named "Mina Davoudi"

Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype.

View Article and Find Full Text PDF

ApoE is a well-known lipid-binding protein that plays a main role in the metabolism and transport of lipids. More recently, apoE-derived peptides have been shown to exert antimicrobial effects. Here, we investigated the antibacterial activity of apoE using in vitro assays, advanced imaging techniques, and in vivo mouse models.

View Article and Find Full Text PDF

The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs.

View Article and Find Full Text PDF

In the present study, we investigate degradable anionic dendritic nanogels (DNG) as carriers for antimicrobial peptides (AMPs). In such systems, the dendritic part contains carboxylic acid-based anionic binding sites for cationic AMPs, whereas linear poly(ethylene glycol) (PEG) chains form a shell for promotion of biological stealth. In order to clarify factors influencing membrane interactions of such systems, we here address effects of nanogel charge, cross-linking, and degradation on peptide loading/release, as well as consequences of these factors for lipid membrane interactions and antimicrobial effects.

View Article and Find Full Text PDF

Tuberculosis has been reaffirmed as the infectious disease causing most deaths in the world. Co-infection with HIV and the increase in multi-drug resistant Mycobacterium tuberculosis strains complicate treatment and increases mortality rates, making the development of new drugs an urgent priority. In this study we have identified a promising candidate by screening antimicrobial peptides for their capacity to inhibit mycobacterial growth.

View Article and Find Full Text PDF

In this study, the use of cubosomes for topical delivery of the antimicrobial peptide (AMP) LL-37 was investigated. Topical delivery of AMPs is of great interest for treatment of skin infections caused by bacteria, such as Staphylococcus aureus. AMP containing cubosomes were produced by three different preparation protocols and compared: (i) pre-loading, where LL-37 was incorporated into a liquid crystalline gel, which thereafter was dispersed into nanoparticles, (ii) post-loading, where LL-37 was let to adsorb onto pre-formed cubosomes, and (iii) hydrotrope-loading, where LL-37 was incorporated during the spontaneously formed cubosomes in an ethanol/glycerol monooleate mixture.

View Article and Find Full Text PDF

Microgels are interesting as potential delivery systems for antimicrobial peptides. In order to elucidate membrane interactions of such systems, we here investigate effects of microgel charge density on antimicrobial peptide loading and release, as well as consequences of this for membrane interactions and antimicrobial effects, using ellipsometry, circular dichroism spectroscopy, nanoparticle tracking analysis, dynamic light scattering and z-potential measurements. Anionic poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate considerable amounts of the cationic antimicrobial peptides LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW) and to protect incorporated peptides from degradation by infection-related proteases at high microgel charge density.

View Article and Find Full Text PDF

Successful use of microgels as delivery systems of antimicrobial peptides (AMPs) requires control of factors determining peptide loading and release to/from the microgels as well as of membrane interactions of both microgel particles and released peptides. Addressing these, we here investigate effects of microgel charge density and conformationally induced peptide amphiphilicity on AMP loading and release using detailed nuclear magnetic resonance (NMR) structural studies combined with ellipsometry, isothermal titration calorimetry, circular dichroism, and light scattering. In parallel, consequences of peptide loading and release for membrane interactions and antimicrobial effects were investigated.

View Article and Find Full Text PDF

Novel antibiotics, such as antimicrobial peptides (AMPs), have recently attended more and more attraction. In this work, dispersed cubic liquid crystalline gel (cubosomes) was used as drug delivery vehicles for three AMPs (AP114, DPK-060 and LL-37). Association of peptides onto cubosomes was studied at two cubosome/peptide ratios using high performance liquid chromatography, ζ-potential and circular dichroism measurements.

View Article and Find Full Text PDF

The COX7A2L (Supercomplex Assembly Factor I, SCAFI) protein has been proposed to be a mitochondrial supercomplex assembly factor required for respirasome (supercomplex containing complexes I, III, and IV) formation. In the C57BL/6 mouse strain a homozygous in-frame 6-base-pair deletion in the COX7a2l/SCAF1 gene resulting in unstable protein and suggesting loss of function was previously identified. The loss of SCAFI was shown to impede respirasome formation, a major concern for the use of C57BL mouse strains in mitochondrial research.

View Article and Find Full Text PDF

Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles.

View Article and Find Full Text PDF

Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models.

View Article and Find Full Text PDF

Functional oxidative phosphorylation requires appropriately assembled mitochondrial respiratory complexes and their supercomplexes formed mainly of complexes I, III and IV. BCS1L is the chaperone needed to incorporate the catalytic subunit, Rieske iron-sulfur protein, into complex III at the final stage of its assembly. In cell culture studies, this subunit has been considered necessary for supercomplex formation and for maintaining the stability of complex I.

View Article and Find Full Text PDF

Background & Aims: Liver is a target organ in many mitochondrial disorders, especially if the complex III assembly factor BCS1L is mutated. To reveal disease mechanism due to such mutations, we have produced a transgenic mouse model with c.232A>G mutation in Bcs1l, the causative mutation for GRACILE syndrome.

View Article and Find Full Text PDF

Background: Antimicrobial peptides (AMP) are important effectors of the innate immune system. Although there is increasing evidence that AMPs influence bacteria in a multitude of ways, bacterial wall rupture plays the pivotal role in the bactericidal action of AMPs. Structurally, AMPs share many similarities with endogenous heparin-binding peptides with respect to secondary structure, cationicity, and amphipathicity.

View Article and Find Full Text PDF

A novel approach for boosting antimicrobial peptides through end tagging with hydrophobic oligopeptide stretches is demonstrated. Focusing on two peptides derived from kininogen, GKHKNKGKKNGKHNGWK (GKH17) and HKHGHGHGKHKNKGKKN (HKH17), tagging resulted in enhanced killing of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and fungal Candida albicans. Microbicidal potency increased with tag length, also in plasma, and was larger for Trp and Phe stretches than for aliphatic ones.

View Article and Find Full Text PDF

Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.

View Article and Find Full Text PDF

Growth factors, comprising diverse protein and peptide families, are involved in a multitude of developmental processes, including embryogenesis, angiogenesis, and wound healing. Here we show that peptides derived from HB-EGF, amphiregulin, hepatocyte growth factor, PDGF-A and PDGF-B, as well as various FGFs are antimicrobial, demonstrating a previously unknown activity of growth factor-derived peptides. The peptides killed the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis, as well as the fungus Candida albicans.

View Article and Find Full Text PDF

Bacterial lipopolysaccharides (LPS) are important triggers of the widespread inflammatory response, which contributes to the development of multiple organ failure during sepsis. The helical 37-amino-acid-long human antimicrobial peptide LL-37 not only possesses a broad-spectrum antimicrobial activity but also binds and neutralizes LPS. However, the use of LL-37 in sepsis treatment is hampered by the fact that it is also cytotoxic.

View Article and Find Full Text PDF

Antimicrobial peptides (AMP) are effector molecules of the innate immune system. A cross-functionality exists between AMPs and heparin-binding peptides. Here, we show that the peptides QPTRRPRPGTGPGRRPRPRPRP (QPT22), derived from proline arginine-rich end leucine-rich repeat protein (PRELP) and KRFKQDGGWSHWSPWSS (KRF17) from thrombospondin exert antimicrobial activities against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as against the Gram-positive Bacillus subtilis.

View Article and Find Full Text PDF