Publications by authors named "Mina Bjelogrlic"

The essence of language and its evolutionary determinants have long been research subjects with multifaceted explorations. This work reports on a large-scale observational study focused on the language use of clinicians interacting with a phrase prediction system in a clinical setting. By adopting principles of adaptation to evolutionary selection pressure, we attempt to identify the major determinants of language emergence specific to this context.

View Article and Find Full Text PDF

Background: Prompt engineering, focusing on crafting effective prompts to large language models (LLMs), has garnered attention for its capabilities at harnessing the potential of LLMs. This is even more crucial in the medical domain due to its specialized terminology and language technicity. Clinical natural language processing applications must navigate complex language and ensure privacy compliance.

View Article and Find Full Text PDF

Electrocardiogram (ECG) is one of the reference cardiovascular diagnostic exams. However, the ECG signal is very prone to being distorted through different sources of artifacts that can later interfere with the diagnostic. For this reason, signal quality assessment (SQA) methods that identify corrupted signals are critical to improve the robustness of automatic ECG diagnostic methods.

View Article and Find Full Text PDF
Article Synopsis
  • NER models using Transformers have become popular for their performance across different languages and fields, but differences in how they evaluate tokens versus entities are often ignored.
  • This study focuses on French oncological reports, fine-tuning four BERT-based models to classify tokens and assess their performance at both token and entity levels.
  • Results show significant discrepancies in effectiveness between the two evaluation methods and indicate that while BERT outperforms ChatGPT in recognizing complex entities in French, comprehensive evaluation approaches are crucial in NER tasks.
View Article and Find Full Text PDF

Radiology reports contain crucial patient information, in addition to images, that can be automatically extracted for secondary uses such as clinical support and research for diagnosis. We tested several classifiers to classify 1,218 breast MRI reports in French from two Swiss clinical centers. Logistic regression performed better for both internal (accuracy > 0.

View Article and Find Full Text PDF

Similarity and clustering tasks based on data extracted from electronic health records on the patient level suffer from the curse of dimensionality and the lack of inter-patient data comparability. Indeed, for many health institutions, there are many more variables, and ways of expressing those variables to represent patients than patients sharing the same set of data. To lower redundancy and increase interoperability one strategy is to map data to semantic-driven representations through medical knowledge graphs such as SNOMED-CT.

View Article and Find Full Text PDF

Background: Information overflow, a common problem in the present clinical environment, can be mitigated by summarizing clinical data. Although there are several solutions for clinical summarization, there is a lack of a complete overview of the research relevant to this field.

Objective: This study aims to identify state-of-the-art solutions for clinical summarization, to analyze their capabilities, and to identify their properties.

View Article and Find Full Text PDF

Hospital caregivers report patient data while being under constant pressure. These records include structured information, with some of them being derived from a restricted list of terms. Finding the right term from a large terminology can be time-consuming, harming the clinician's productivity.

View Article and Find Full Text PDF

This paper presents the design of an autonomous tracking device to enhance understanding of ambulatory peritoneal dialysis. The resulting tool aims to serve as a framework for research analysis and a decision support for treatment adjustments in peritoneal dialysis.

View Article and Find Full Text PDF

Many medical narratives are read by care professionals in their preferred language. These documents can be produced by organizations, authorities or national publishers. However, they are often hardly findable using the usual query engines based on English such as PubMed.

View Article and Find Full Text PDF

Automatic classification of ECG signals has been a longtime research area with large progress having been made recently. However these advances have been achieved with increasingly complex models at the expense of model's interpretability. In this research, a new model based on multivariate autoregressive model (MAR) coefficients combined with a tree-based model to classify bundle branch blocks is proposed.

View Article and Find Full Text PDF

With the rapid spread of the SARS-CoV-2 virus since the end of 2019, public health confinement measures to contain the propagation of the pandemic have been implemented. Our method to estimate the reproduction number using Bayesian inference with time-dependent priors enhances previous approaches by considering a dynamic prior continuously updated as restrictive measures and comportments within the society evolve. In addition, to allow direct comparison between reproduction number and introduction of public health measures in a specific country, the infection dates are inferred from daily confirmed cases and confirmed death.

View Article and Find Full Text PDF

Background: Interoperability and secondary use of data is a challenge in health care. Specifically, the reuse of clinical free text remains an unresolved problem. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) has become the universal language of health care and presents characteristics of a natural language.

View Article and Find Full Text PDF

This paper presents five document retrieval systems for a small (few thousands) and domain specific corpora (weekly peer-reviewed medical journals published in French) as well as an evaluation methodology to quantify the models performance. The proposed methodology does not rely on external annotations and therefore can be used as an ad hoc evaluation procedure for most document retrieval tasks. Statistical models and vector space models are empirically compared on a synthetic document retrieval task.

View Article and Find Full Text PDF

The paper presents a review of current research to develop predictive models for automated detection of drug-induced repolarization disorders and shows a feasibility study for developing machine learning tools trained on massive multimodal datasets of narrative, textual and electrocardiographic records. The goal is to reduce drug-induced long QT and associated complications (Torsades-de-Pointes, sudden cardiac death), by identifying prescription patterns with pro-arrhythmic propensity using a validated electronic application for the detection of adverse drug events with data mining and natural language processing; and to compute individual-based predictive scores in order to further identify clinical conditions, concomitant diseases, or other variables that correlate with higher risk of pro-arrhythmic situations.

View Article and Find Full Text PDF