Unlabelled: Flame-induced atmospheric pressure chemical ionization (FAPCI) has been used to directly characterize chemical compounds on a glass rod and drug tablet surfaces. In this study, FAPCI was further applied to interface thin layer chromatography (TLC) and mass spectrometry (MS) for mixture analysis.
Methods: A micro-sized oxyacetylene flame was generated using a small concentric tube system.
In the emergency department, it is important to rapidly identify the toxic substances that have led to acute poisoning because different toxicants or toxins cause poisoning through different mechanisms, requiring disparate therapeutic strategies and precautions against contraindicating actions, and diverse directions of clinical course monitoring and prediction of prognosis. Ambient ionization mass spectrometry, a state-of-the-art technology, has been proved to be a fast, accurate, and user-friendly tool for rapidly identifying toxicants like residual pesticides on fruits and vegetables. In view of this, developing an analytical platform that explores the application of such a cutting-edge technology in a novel direction has been initiated a research program, namely, the rapid identification of toxic substances which might have caused acute poisoning in patients who visit the emergency department and requires an accurate diagnosis for correct clinical decision-making to bring about corresponding data-guided management.
View Article and Find Full Text PDFAmbient mass spectrometry thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) can rapidly identify chemicals without pretreatment of biological samples. This study used a rapid semi-quantitative TD-ESI/MS screening technique for the probe skin sampling of melamine workers occupationally exposed to different ambient melamine concentrations to create avatar-like body images, which were then used to study temporal and dynamic changes in nephrotoxic melamine exposure. We enrolled four voluntary melamine workers from one factory, each from one of four worksites.
View Article and Find Full Text PDFA simple flame-induced atmospheric pressure chemical ionization (FAPCI) source was developed to couple a gas chromatograph (GC) with a mass spectrometer (MS). The interface consisted of a heated transfer line and a high voltage-free ambient FAPCI source. Nitrogen gas flowing through the heated transfer line was utilized to deliver the analytes eluted from a GC column to the ionization region.
View Article and Find Full Text PDFSqualene (SQ), a highly unsaturated sebaceous lipid, plays an important role in protecting human skin. To better understand the role of SQ in clinical medicine, an efficient analytical approach is needed to comprehensively study the distribution of SQ on different parts of the skin. In this study, sebaceous lipids were collected from different epidermal areas of a volunteer with sampling probes.
View Article and Find Full Text PDFMultiple solid phase microextraction (mSPME) combined with thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) was developed to rapidly characterize trace analytes in aqueous solution. A number of commercial available SPME fibers (from 2 to 10 fibers) were simultaneously used for extracting the analytes in solution. The fibers were then bundled together on a holder and subjected for the ambient mass spectrometric analysis.
View Article and Find Full Text PDFPhthalates are known endocrine disruptors that can have adverse effects on human hormonal balance and development. Phthalates are semi-volatile chemical compounds, thus they can continuously leach from phthalate-containing objects and pollute the environments such as offices or laboratories, where workers in these spaces can inhale potentially harmful amounts of phthalates. Identifying and removing phthalate-contaminated objects from these indoor environments can effectively eliminate exposure to these environmental hormones.
View Article and Find Full Text PDFHigh-throughput screening of plastic products in children's living environment is necessary to identify phthalate-containing objects for the concern of public health and safety. A novel strategy of probe collecting technique combined with ambient mass spectrometry was developed to carry out the large-scale sample analysis. Analytes from the surface of approximately 500 objects each in two kindergartens in Taiwan were collected using the same number of the metallic probes.
View Article and Find Full Text PDFLabor- and time-intensive sample preparation and liquid chromatography mass spectrometry (LC-MS) analysis are required for traditional pharmacokinetics (PK) studies. In order to simplify and accelerate the analytical process of the PK study, solid phase microextraction (SPME) combined with thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) was developed for rapid characterization of trace drug in biological fluids. Methylphenidate in plasma was extracted and concentrated by direct immersion SPME using fused-silica fibers coated with polydimethylsiloxane.
View Article and Find Full Text PDFRationale: Conventional mass spectrometry is encumbered by laborious and inconvenient sample pretreatment. Ambient thermal desorption electrospray ionization mass spectrometry (TD-ESI-MS) is most noted for its rapid, simple, and sensitive detection capabilities. In this study, TD-ESI-MS was used to rapidly characterize residual pesticides on the surfaces of fruits and vegetables.
View Article and Find Full Text PDFA dual ionization source combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was developed to simultaneously ionize both polar and nonpolar compounds. The source was constructed by inserting a fused silica capillary into a stainless steel column enclosed in a glass tube. A high dc voltage was applied to a methanol solution flowing in the fused silica capillary to generate an ESI plume at the capillary tip.
View Article and Find Full Text PDFThe use of an ambient ionization mass spectrometry technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS) for molecular imaging is described in this section. The technique requires little or no sample pretreatment and the application of matrix on sample surfaces is unnecessary. In addition, the technique is highly suitable for the analysis of hard and thick tissues compared to other molecular imaging methods because it does not require production of thin tissue slices via microtomes, which greatly simplifies the overall sample preparation procedure and prevents the redistribution of analytes during matrix desorption.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2014
Rationale: The elucidation of chemical reaction mechanisms has attracted tremendous interest in recent years. Here, gravitational sampling electrospray ionization mass spectrometry (GS-ESI-MS) is used to explore a simple method for the real-time monitoring of chemical and biochemical reactions.
Methods: A sample solution in a stainless steel sample well is directly delivered through a fused-silica capillary due to the forces of gravity, capillary action, and electroosmotic flow (EOF).
The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins.
View Article and Find Full Text PDFElectrospray laser desorption ionization mass spectrometry (ELDI/MS) allows the rapid desorption and ionization of proteins from solutions under ambient conditions. In this study, we have demonstrated the use of ELDI/MS to efficiently examine the integrity of the proteins stored in various solutions before they were further used for other biochemical tests. The protein standards were prepared in the solutions containing buffers, organic salts, inorganic salts, strong acid, strong base, and organic solvents, respectively, to simulate those collected from solvent extraction, filtration, dialysis, or chromatographic separation.
View Article and Find Full Text PDFRapid characterization of thermally stable chemical compounds in solid or liquid states is achieved through thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS). A feature of this technique is that sampling, desorption, ionization, and mass spectrometric detection are four separate events with respect to time and location. A metal probe was used to sample analytes in their solid or liquid states.
View Article and Find Full Text PDFInterfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system.
View Article and Find Full Text PDFAmbient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g.
View Article and Find Full Text PDFThin layer chromatography (TLC)--a simple, cost-effective, and easy-to-operate planar chromatographic technique--has been used in general chemistry laboratories for several decades to routinely separate chemical and biochemical compounds. Traditionally, chemical and optical methods are employed to visualize the analyte spots on the TLC plate. Because direct identification and structural characterization of the analytes on the TLC plate through these methods are not possible, there has been long-held interest in the development of interfaces that allow TLC to be combined with mass spectrometry (MS)--one of the most efficient analytical tools for structural elucidation.
View Article and Find Full Text PDFElectrospray-assisted laser desorption ionization (ELDI) is a technique which combines laser desorption with subsequent electrospray ionization. It is useful for directly detecting small and large molecules in solid or liquid samples under ambient conditions. In this paper, the detection of the protein molecules desorbed on a dry protein spot by using pulse laser energies of up to 300 microJ was demonstrated.
View Article and Find Full Text PDFThe combination of laser-induced acoustic desorption and electrospray ionization mass spectrometry (LIAD/ESI/MS) can be used to rapidly characterize chemical compounds separated on a thin layer chromatography (TLC) plate. We performed LIAD analysis by irradiating the rear side of an aluminum-based TLC plate with a pulsed infrared (IR) laser. To efficiently generate and transfer acoustic and shock waves to ablate the analyte-containing TLC gels, a glass slide was attached to the rear of the TLC plate and the gap between the glass slide and the TLC plate was filled with a viscous solution (glycerol).
View Article and Find Full Text PDFElectrospray-assisted laser desorption/ionization (ELDI) combined with mass spectrometry allows chemical and biochemical compounds to be characterized directly from hydrophilic and hydrophobic organic solutions mixed with carbon powders under ambient conditions. Organic and inorganic compounds dissolved in polar or nonpolar solvent such as methanol, tetrahydrofuran, ethyl acetate, toluene, dichloromethane, or hexane can be detected using this ambient ionization technique without prior pretreatment. We have used this technique to monitor the progress in several ongoing reactions: the epoxidation of chalcone in ethanol, the chelation of ethylenediaminetetraacetic acid with copper and nickel ions in aqueous solution, the chelation of 1,10-phenanthroline with iron(II) in methanol, and the tryptic digestion of cytochrome c in aqueous solution.
View Article and Find Full Text PDFLiquid electrospray laser desorption/ionization (ELDI) mass spectrometry allows desorption and ionization of proteins directly from aqueous solutions and biological fluids under ambient conditions. Native protein ions such as those of myoglobin, cytochrome c, and hemoglobin were obtained. A droplet (ca.
View Article and Find Full Text PDFElectrospray-assisted laser desorption/ionization (ELDI), an ionization method that combines laser desorption and electrospray ionization (ESI), can be used under ambient conditions to characterize organic compounds (including FD&C dyes, amines, extracts of a drug tablet) separated in the central track on a thin-layer chromatography (TLC) plate coated with either reversed-phase C18 particles or normal-phase silica gel. After drying, the TLC plate was placed on an acrylic sample holder set in front of the sampling skimmer of an ion trap mass analyzer. The chemicals at the center of the TLC plate were analyzed by pushing the sample holder into the path of a laser beam with a syringe pump.
View Article and Find Full Text PDF