A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain.
View Article and Find Full Text PDFA mechanical and electrical transistor structure (METS) is proposed for effective voltage scaling. The sub-2 nm nanogap by atomic layer deposition (ALD) without stiction and the application of a dielectric with high-permittivity allowed the pull-in voltage of sub-2 V, showing the strength of the mechanical actuation that is hard to realize in a typical complementary metal-oxide-semiconductor (CMOS) transistor. The results are verified by simulation and interpreted by the numerical equation.
View Article and Find Full Text PDFNanoelectromechanical (NEM) switches have received widespread attention as promising candidates in the drive to surmount the physical limitations currently faced by complementary metal oxide semiconductor technology. The NEM switch has demonstrated superior characteristics including quasi-zero leakage behaviour, excellent density capability and operation in harsh environments. However, an unacceptably high operating voltage (4-20 V) has posed a major obstacle in the practical use of the NEM switch in low-power integrated circuits.
View Article and Find Full Text PDF