All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells.
View Article and Find Full Text PDFSolid-state electrolyte materials are attractive options for meeting the safety and performance needs of advanced lithium-based rechargeable battery technologies because of their improved mechanical and thermal stability compared to liquid electrolytes. However, there is typically a tradeoff between mechanical and electrochemical performance. Here an elastic Li-ion conductor with dual covalent and dynamic hydrogen bonding crosslinks is described to provide high mechanical resilience without sacrificing the room-temperature ionic conductivity.
View Article and Find Full Text PDFFast lithium ion and electron transport inside electrode materials are essential to realize its superb electrochemical performances for lithium rechargeable batteries. Herein, a distinctive structure of cathode material is proposed, which can simultaneously satisfy these requirements. Nanosized LiV(PO) (LVP) particles can be successfully grown up on the carbon nanofiber via electrospinning method followed by a controlled heat-treatment.
View Article and Find Full Text PDFEnergy-storage technologies such as lithium-ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever-growing market of flexible and wearable electronics has nourished progress in building multifunctional energy-storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed.
View Article and Find Full Text PDFBackground: Hepatocyte transplantation is a promising therapy for acute liver failure. Cell therapy using xenogeneic sources has emerged as an alternative treatment for patients with organ failure due to the shortage of transplantable human organs. The purpose of this study was to improve the survival of mice with acute liver failure by transplanting encapsulated neonatal pig re-aggregated liver cells (NPRLC).
View Article and Find Full Text PDFA 2H-MoS2 (H=hexagonal) ultrathin nanomesh with high defect generation and large porosity is demonstrated to improving electrochemical performance, including in lithium-ion batteries (LIBs) and the hydrogen evolution reaction (HER), with the aid of a 3D reduced graphene oxide (RGO) scaffold as fast electron and ion channels. The 3D defect-rich MoS2 nanomesh/RGO foam (Dr-MoS2 Nm/RGO) can be easily obtained through a one-pot cobalt acetate/graphene oxide (GO) co-assisted hydrothermal reaction, in which GO, cobalt and acetate ions are co-morphology-controlling agents and defect inducers. As an anode material for LIBs, Dr-MoS2 Nm/RGO has only a 9% capacity decay at a 10 C discharge rate versus 0.
View Article and Find Full Text PDFWe report a synthetic scheme for preparing a SnO2-Sn-carbon triad inverse opal porous material using the controlled sintering of Sn precursor-infiltrated polystyrene (PS) nanobead films. Because the uniform PS nanobead film, which can be converted into carbon via a sintering step, uptakes the precursor solution, the carbon can be uniformly distributed throughout the Sn-based anode material. Moreover, the partial carbonization of the PS nanobeads under a controlled Ar/oxygen environment not only produces a composite material with an inverse opal-like porous nanostructure but also converts the Sn precursor/PS into a SnO2-Sn-C triad electrode.
View Article and Find Full Text PDFPurpose: The aim of this study is to evaluate the efficacy and the safety of additional 4-week chemotherapy with capecitabine during the resting periods after a 6-week neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer.
Methods: Radiotherapy was delivered to the whole pelvis at a total dose of 50.4 Gy for 6 weeks.
Morphology-controlled MoS2 nanosheets were successfully synthesized with the aid of graphene/acid coexistence by a one-pot hydrothermal method. The ultrathin MoS2 nanosheets were self-assembled into a cockscomb-like structure with an exposed (100) facet on graphene sheets, which is in strong contrast to large aggregate MoS2 plates grown freely on graphene sheets without acetic acid. The ultrathin MoS2 nanosheets displayed excellent rate performance for Li storage (709 mAh·g(-1) capacity at 8320 mA·g(-1) discharging rate) and superior charge/discharge cyclability.
View Article and Find Full Text PDFHerein, we first report a facile synthetic route for preparing micron-sized particles comprising TiO(2)-B nanotubes, namely, skein shaped TiO(2)-B nanotube cluster particles with an ultra high surface area of 257 m(2) g(-1). The galvanostatic charge-discharge test showed that the hierarchical micron-sized particles composed of TiO(2)-B nanotubes with approximately 10 nm in diameter exhibited outstanding rate capability as well as high specific capacity.
View Article and Find Full Text PDFPurpose: The safety and the feasibility of performing laparoscopic surgery for rectal cancer after preoperative chemoradiotherapy (CRT) have not yet been established. Thus, the aim of this study was to evaluate the efficacy and the safety of laparoscopic rectal cancer surgery performed after preoperative CRT.
Methods: We enrolled 124 consecutive patients who underwent laparoscopic surgery for rectal cancer.
A carbon-free Li(4)Ti(5)O(12) electrode has shown excellent electrochemical performance without any effort to enhance the electrical conductivity. Partial reduction of Ti(4+) and a metallic Li(7)Ti(5)O(12) phase are suggested to be possible origins of the exceptional behavior.
View Article and Find Full Text PDFSynthesis time using microwave irradiation was varied to elucidate the electrochemical degradation mechanism of LiFePO(4) related to the evolution of Fe(2)P. When the amount of Fe(2)P was above a critical level, LiFePO(4) tended to change into an insulating phase, Li(4)P(2)O(7). The correlation between structural analysis and electrochemical analysis attributed the initial degradation of LiFePO(4) to the low electronic conductivity of Li(4)P(2)O(7), whereas the deficiency of P and O evolved by Li(4)P(2)O(7) resulted in the cyclic degradation of LiFePO(4).
View Article and Find Full Text PDFHydrogen storage properties of mutiwalled carbon nanotubes (MWCNTs) with Ni nanoparticles were investigated. The metal nanoparticles were dispersed on MWCNTs surfaces using an incipient wetness impregnation procedure. Ni catalysts have been known to effectively dissociate hydrogen molecules in gas phase, providing atomic hydrogen possible to form chemical bonding with the surfaces of MWCNTs.
View Article and Find Full Text PDF