Aim: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system.
Methods: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SARS patients in Beijing in China.
Results: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise, cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals.
The transmission of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is associated with close contact to SARS patients and droplet secretions of those patients. The finding of positive RT-PCR results from stools of SARS patients suggests that stools of SARS patients or sewage containing stools of patients could transmit SARS-CoV. We used a novel style of electropositive filter media particle to concentrate the SARS-CoV from the sewage of two hospitals receiving SARS patients in Beijing.
View Article and Find Full Text PDFIn this study, the persistence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) was observed in feces, urine and water. In addition, the inactivation of SARS-CoV in wastewater with sodium hypochlorite and chlorine dioxide was also studied. In vitro experiments demonstrated that the virus could only persist for 2 days in hospital wastewater, domestic sewage and dechlorinated tap water, while 3 days in feces, 14 days in PBS and 17 days in urine at 20 degrees C.
View Article and Find Full Text PDFObjective: In order to explore the existence of SARS coronavirus (Co-V) and/or its RNA in sewage of hospitals administered SARS patients.
Methods: A novel electropositive filter was used to concentrate the SARS-CoV from the sewage of two hospitals administered SARS patients in Beijing, including twelve 2,500 ml sewage samples from the hospitals before disinfection, and ten 25,000 ml samples after disinfection; as well as cell culture, RT-PCR and sequencing of gene to detect and identify the viruses from sewage.
Results: There was no live SARS-CoV detected in the sewage in this study.