A scalable nanofastener featuring a 3D interlocked interfacial structure between the hydrocarbon membrane and perfluorinated sulfonic acid based catalyst layer is presented to overcome the interfacial issue of hydrocarbon membrane based polymer electrolyte membrane fuel cells. The nanofastener-introduced membrane electrode assembly (MEA) withstands more than 3000 humidity cycles, which is 20 times higher durability than that of MEA without nanofastener.
View Article and Find Full Text PDFThe inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li(+) depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm(-2) and permit room-temperature operation of corresponding Li metal batteries with low polarizations.
View Article and Find Full Text PDFA physical interlocking interface that can tightly bind a sulfonated poly(arylene ether sulfone) (SPAES) membrane and a Nafion catalyst layer in polymer electrolyte fuel cells is demonstrated. Owing to higher expansion with hydration for SPAES than for Nafion, a strong normal force is generated at the interface of a SPAES pillar and a Nafion hole, resulting in an 8-fold increase of the interfacial bonding strength at RH 50% and a 4.7-times increase of the wet/dry cycling durability.
View Article and Find Full Text PDFNafion is known to suppress the polysulfide (PS) shuttle effect, a major obstacle to achieving high capacity and long cycle life for lithium-sulfur batteries. However, elaborate control of the layer's configuration is required for high performance. In this regard, we designed a Nafion-enveloped sulfur cathode, where the Nafion layer is formed on the skin of the cathode, covering its surface and edge while not restricting the porosity.
View Article and Find Full Text PDFIonomer distribution is an important design parameter for high performance polymer electrolyte membrane fuel cells (PEMFCs); however, the nano-scale modulation of the ionomer morphology has not been intensively explored. Here, we propose a new route to modulate the ionomer distribution that features the introduction of poly(ethylene glycol) (PEG) to the cathode catalyst layer and the leaching the PEG phase from the catalyst layer using a water effluent during operation. The key concept in the approach is the expansion of the ionomer thin film through the PEG addition.
View Article and Find Full Text PDFWe report boron nitride nanoflakes (BNNFs), for the first time, as a nanofiller for polymer electrolyte membranes in fuel cells. Utilizing the intrinsic mechanical strength of two-dimensional (2D) BN, addition of BNNFs even at a marginal content (0.3 wt %) significantly improves mechanical stability of the most representative hydrocarbon-type (HC-type) polymer electrolyte membrane, namely sulfonated poly(ether ether ketone) (sPEEK), during substantial water uptake through repeated wet/dry cycles.
View Article and Find Full Text PDF