A series of acene-modified small molecules have been designed and synthesized, and their photovoltaic characteristics were studied by using the small molecules in organic photovoltaics (OPVs). Different cores were introduced to modulate the conjugation lengths of the small molecules and the bulk heterojunction (BHJ) morphologies. Three small-molecule donors were prepared, namely Ph-TTR, Na-TTR, and An-TTR, which have phenyl, naphthalene, and anthracene moieties, respectively, as conjugated cores.
View Article and Find Full Text PDFTo investigate the influence of donor molecule crystallinity on photovoltaic performance in all-small-molecule solar cells, two dithieno[2,3- d:2',3'- d']-benzo[1,2- b:4,5- b']dithiophene (DTBDT)-based small molecules, denoted as DTBDT-Rho and DTBDT-S-Rho and incorporating different side chains, are synthesized and characterized. The photovoltaic properties of solar cells made of these DTBDT-based donor molecules are systemically studied with the [6,6]-phenyl-C-butyric acid methyl ester (PCBM) fullerene acceptor and the O-IDTBR nonfullerene acceptor to study the aggregation behavior and crystallinity of the donor molecules in both blends. Morphological analyses and a charge carrier dynamics study are carried out simultaneously to derive structure-property relationships and address the requirements of all-small-molecule solar cells.
View Article and Find Full Text PDFObjective: Anterior odontoid screw fixation is a safe and effective method for the treatment of odontoid fractures. The surgical technique is recommended for perforation of the apical cortex of the dens by the lag screw. However, overpenetration of the apical cortex may lead to potentially serious complications such as damages of adjacent vascular and neural structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2016
A push-pull-type donor copolymer, named PP-TPD, was synthesized with the Suzuki coupling reaction using 6H-phenanthro[1,10,9,8-cdefg]carbazole (PCZ) as the donor unit and 1,3-bis(5-bromothiophen-2-yl)-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (TPD) as the acceptor unit. The synthesized PP-TPD was systematically investigated in terms of crystallinity and thermal, electrical, electrochemical, and optical properties. PP-TPD revealed green-selective absorption with a narrow full width at half-maximum of 138 nm.
View Article and Find Full Text PDF