We present a Si photonic-electronic integrated ring-resonator based optical receiver that contains a temperature-controlled ring-resonator filter (RRF), a Ge photodetector, and receiver circuits in a single chip. The temperature controller automatically determines the RRF temperature at which the maximum transmission of the desired WDM signal is achieved and maintains this condition against any temperature or input wavelength fluctuation. This Si photonic-electronic integrated circuit is realized with 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2017
A highly stretchable, low-cost strain sensor was successfully prepared using an extremely cost-effective ionic liquid of ethylene glycol/sodium chloride. The hysteresis performance of the ionic-liquid-based sensor was able to be improved by introducing a wavy-shaped fluidic channel diminishing the hysteresis by the viscoelastic relaxation of elastomers. From the simulations on visco-hyperelastic behavior of the elastomeric channel, we demonstrated that the wavy structure can offer lower energy dissipation compared to a flat structure under a given deformation.
View Article and Find Full Text PDF