Publications by authors named "Min-Hao Kuo"

Article Synopsis
  • Abnormal tau protein accumulation is a key feature of Alzheimer's disease, with various post-translational modifications (PTMs) such as phosphorylation contributing to the disease's progression.
  • A pilot study used complementary techniques, CZE-MS/MS and RPLC-MS/MS, to analyze recombinant human tau-0N3R, resulting in the identification of 50 phosphorylation sites, which is 25% more than RPLC-MS/MS could find alone.
  • The study also introduced capillary isoelectric focusing (cIEF)-MS, revealing multiple tau-0N3R proteoforms, some with up to nine phosphorylation sites, highlighting the effectiveness of these techniques for studying tau's complexity and potential dimerization.
View Article and Find Full Text PDF

Abnormal accumulation of tau proteins is one pathological hallmark of Alzheimer□s disease (AD). Many tau protein post-translational modifications (PTMs) are associated with the development of AD, such as phosphorylation, acetylation, and methylation. Therefore, a complete picture of PTM landscape of tau is critical for understanding the molecular mechanisms of AD progression.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by the accumulation of amyloid-β plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a β-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic.

View Article and Find Full Text PDF

Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack.

View Article and Find Full Text PDF

The P301L mutation in tau protein is a prevalent pathogenic mutation associated with neurodegenerative frontotemporal dementia, FTD. The mechanism by which P301L triggers or facilitates neurodegeneration at the molecular level remains unclear. In this work, we examined the effect of the P301L mutation on the biochemical and biological characteristics of pathologically relevant hyperphosphorylated tau.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder underlying dementia in the geriatric population. AD manifests by two pathological hallmarks: extracellular amyloid-β (Aβ) peptide-containing senile plaques and intraneuronal neurofibrillary tangles comprised of aggregated hyperphosphorylated tau protein (p-tau). However, more than half of AD cases also display the presence of aggregated α-synuclein (α-syn)-containing Lewy bodies.

View Article and Find Full Text PDF

Background: Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs.

Methods: Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack.

View Article and Find Full Text PDF

Intracellular deposition of α-synuclein and tau are hallmarks of synucleinopathies and tauopathies, respectively. Recently, several dye-based imaging probes with selectivity for tau aggregates have been developed, but suitable imaging biomarkers for synucleinopathies are still unavailable. Detection of both of these aggregates early in the disease process may allow for prophylactic therapies before functional impairments have manifested, highlighting the importance of developing specific imaging probes for these lesions.

View Article and Find Full Text PDF

In contrast to A plaques, the spatiotemporal distribution of neurofibrillary tangles of hyperphosphorylated tau (p-tau) predicts cognitive impairment in Alzheimer's disease (AD), underscoring the key pathological role of p-tau and the utmost need to develop AD therapeutics centering upon the control of p-tau aggregation and cytotoxicity. Our drug discovery program is focused on compounds that prevent the aggregation and cytotoxicity of p-tau moieties of the tau isoform 1N4R due to its prevalence (1 N) and long-distance trans-synaptic propagation (4R). We prepared and tested twenty-four newly synthesized small molecules representing the urea (), sulfonylurea (), and sulfonamide () series and evaluated their anti-aggregation effects with biophysical methods (thioflavin T and S fluorescence assays, transmission electron microscopy) and intracellular inclusion cell-based assays.

View Article and Find Full Text PDF

Background: Eleven tau immunoglobulin G (IgG) antibodies have entered clinical trials to treat tauopathies, including Alzheimer's disease, but it is unclear which IgG subclass/subtype has the ideal efficacy and safety profile. Only two subtypes, with or without effector function, have been examined in the clinic and not for the same tau antibody. The few preclinical studies on this topic have only compared two subtypes of one antibody each and have yielded conflicting results.

View Article and Find Full Text PDF

The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis.

View Article and Find Full Text PDF

The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by the formation of hyperphosphorylated tau, leading to neurofibrillary tangles that contribute to cognitive decline.
  • Researchers developed a recombinant form of hyperphosphorylated tau (p-tau) that spontaneously forms toxic fibrils and induces cell death without needing aggregation inducers.
  • The study indicates that p-tau serves as a valuable resource for understanding AD mechanisms and may help in the search for potential therapeutic drugs.
View Article and Find Full Text PDF

The spindle assembly checkpoint (SAC) is key to faithful segregation of chromosomes. One requirement that satisfies SAC is appropriate tension between sister chromatids at the metaphase-anaphase juncture. Proper tension generated by poleward pulling of mitotic spindles signals biorientation of the underlying chromosome.

View Article and Find Full Text PDF
Article Synopsis
  • Biorientation of sister chromosomes is essential for accurate cell division, and this process relies on tension between sister chromatids as a critical indicator of proper attachment.
  • Shugoshin proteins play a key role in this tension signaling by being recruited to chromatin and forming specific domains that help sense tension.
  • Recent findings highlight that not only centromeric phosphorylation but also pericentric histone acetylation is important for the recruitment and function of Shugoshin, indicating that chromatin actively participates in the segregation process during mitosis.
View Article and Find Full Text PDF

Mitotic fidelity is ensured by achieving biorientation on all paired chromosomes. The key signal for proper chromosome alignment is the tension between sister chromatids created by opposing poleward force from the spindles. In the budding yeast, the tension-sensing function requires that the Shugoshin protein, Shugoshin 1, be recruited to the centromeres and the neighboring pericentric regions.

View Article and Find Full Text PDF

To ensure genome stability during cell division, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies before segregation. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. In budding yeast, the residue Gly44 of histone H3 is critical for retaining the conserved Shugoshin protein Sgo1p at the pericentromeres for monitoring the tension status during mitosis.

View Article and Find Full Text PDF

In a modern society that is increasingly older and "heavier," it is understandable that the majority favors a slimmer body that helps to sail smoothly into the dusk of life. Given the association between obesity and many metabolic and cardiovascular disorders, there are stern criticisms over such a thought of "good fat". Ironically, a phenomenon called "obesity paradox", that is, the overweight population purportedly enjoys the lowest all-cause mortality, and baffles open-minded clinicians and scientists.

View Article and Find Full Text PDF

Intracellular triacylglycerol (TAG) is a ubiquitous energy storage lipid also involved in lipid homeostasis and signaling. Comparatively, little is known about TAG's role in other cellular functions. Here we show a pro-longevity function of TAG in the budding yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Alzheimer's disease is one of a large group of neurodegenerative disorders known as tauopathies that are manifested by the neuronal deposits of hyperphosphorylated tau protein in the form of neurofibrillary tangles (NFTs). The density of NFT correlates well with cognitive impairment and other neurodegenerative symptoms, thus prompting the endeavor of developing tau aggregation-based therapeutics. Thus far, however, tau aggregation assays use recombinant or synthetic tau that is devoid of the pathology-related phosphorylation marks.

View Article and Find Full Text PDF

Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex.

View Article and Find Full Text PDF

Protein acetylation and phosphorylation are key modifications that regulate both normal and pathological protein functions. The gel systems currently used for analyzing modified proteins require either expensive reagents or time-consuming second dimension electrophoresis. Here we present a neutral pH gel system that allows the analysis of acetylated and phosphorylated proteins.

View Article and Find Full Text PDF

Selective enrichment of phosphopeptides prior to their analysis by mass spectrometry (MS) is vital for identifying protein phosphorylation sites involved in cellular regulation. This study describes modification of porous nylon substrates with TiO2 nanoparticles to create membranes that rapidly enrich phosphopeptides. Membranes with a 22-mm diameter bind 540 nmol of phosphoangiotensin and recover 70% of the phosphopeptides in mixtures with a 15-fold excess of nonphosphorylated proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Unicellular marine algae, particularly the genus Nannochloropsis, are potential sources for sustainable biofuels, but there is a lack of optimal species and genetic resources for their engineering.
  • Nannochloropsis oceanica has been successfully genetically modified, revealing significant information about its genome (28.7 Mb) and a total of 11,973 genes, including over 100 related to lipid metabolism.
  • The study also compares N. oceanica's genes to those of N. gaditana, identifying unique genes and provides protocols for transforming N. oceanica, aiding future genetic research.
View Article and Find Full Text PDF