Publications by authors named "Min-Han Tsai"

In this study, we demonstrated an electrochemical aptasensor for calmodulin (CaM) detection and the peptide sequence (YWDKIKDFIGG) is obtained from in vitro ribosome display selection. To immobilize this peptide probe on the electrode surface, cystine was incorporated at the end of this peptide sequence. After a maleimide-functionalized poly(3,4-ethylenedioxythiophene), poly(EODT-MI), film was electropolymerized on the electrode, the peptide probe was immobilized through thiol-ene conjugation with the cystine end.

View Article and Find Full Text PDF

Rapid detection of Acinetobacter baumannii (AB) is critical for limiting healthcare-associated infections and providing the best treatment for infected individuals. Herein an integrated microfluidic device for AB diagnosis utilizing a new dual aptamer assay was developed for point-of-care (POC) applications; magnetic beads coated with AB-specific aptamers were used to capture bacteria, and quantum dots (QD) bound to a second aptamer were utilized to quantify the amount of bacteria with a light-emitting diode (LED)-induced fluorescence module integrated into the device. Within a rapid detection of 30 min, a limit of detection of only 100 colony-forming units (CFU)/reaction was obtained, and all necessary microfluidic devices were actuated by a combination of permanent magnets and electromagnets.

View Article and Find Full Text PDF

In response to recent developments for applying conducting polymers on various biomedical applications, the development of characterization techniques for evaluating the states of conducting polymers in liquids is beneficial to the applications of these materials. In this study, we propose a platform using electrochemical surface-enhanced Raman scattering (EC-SERS) technology, which allows a direct measurement of the redox states of conducing polymers in liquids. A thiophene-based conducting polymer, hydroxymethyl poly(3,4-ethylenedioxythiophene) or poly(EDOT-OH), was used to demonstrate this concept.

View Article and Find Full Text PDF

Background: C-peptide is a surrogate of the pancreatic beta cell mass. However, the clinical significance of C-peptide in a diabetic patient after bariatric surgery has not been studied clearly.

Methods: From February 2005 to January 2009, a total of 205 (124 females and 81 males) consecutive morbidly obese patients with type 2 diabetes mellitus (T2DM) enrolled in a surgically supervised weight loss program with at least 1 year follow-up were examined.

View Article and Find Full Text PDF