Publications by authors named "Min-Gi Kwon"

Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. mice, adeno-associated virus encoding under liver-specific promoter, adenovirus encoding , and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis.

View Article and Find Full Text PDF

Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure.

View Article and Find Full Text PDF

Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny.

View Article and Find Full Text PDF

The self-renewal properties of human pluripotent stem cells (hPSCs) contribute to their efficacy in tissue regeneration applications yet increase the likelihood of teratoma formation, thereby limiting their clinical utility. To address this issue, we developed a tool to specifically target and neutralize undifferentiated hPSCs, thereby minimizing tumorigenicity risk without negatively affecting regenerated and somatic tissues. Specifically, we conjugated a monoclonal antibody (K6-1) previously generated in our laboratory against desmoglein 2 (Dsg2), which is highly differentially expressed in undifferentiated hPSCs versus somatic tissues, to the chemotherapeutic agent doxorubicin (DOX).

View Article and Find Full Text PDF

Objective: Obesity is recognized as the cause of multiple metabolic diseases and is rapidly increasing worldwide. As obesity is due to an imbalance in energy homeostasis, the promotion of energy consumption through browning of white adipose tissue (WAT) has emerged as a promising therapeutic strategy to counter the obesity epidemic. However, the molecular mechanisms of the browning process are not well understood.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks.

View Article and Find Full Text PDF

Adipogenesis involved in hypertrophy and hyperplasia of adipocytes is responsible for expanding the mass of adipose tissues in obese individuals. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) are two principal transcription factors induced by delicate signaling pathways, including signal transducer and activator of transcription 5 (STAT5), in adipogenesis. Here, we demonstrated a novel role of ginkgetin, a biflavone from Ginkgo biloba leaves, as a STAT5 inhibitor that blocks the differentiation of preadipocytes into adipocytes.

View Article and Find Full Text PDF