Background: With the increasing development of biotechnology and information technology, publicly available data in chemistry and biology are undergoing explosive growth. Such wealthy information in these resources needs to be extracted and then transformed to useful knowledge by various data mining methods. However, a main computational challenge is how to effectively represent or encode molecular objects under investigation such as chemicals, proteins, DNAs and even complicated interactions when data mining methods are employed.
View Article and Find Full Text PDFBackground: In recent years, predictive models based on machine learning techniques have proven to be feasible and effective in drug discovery. However, to develop such a model, researchers usually have to combine multiple tools and undergo several different steps (e.g.
View Article and Find Full Text PDFBackground: More and more evidences from network biology indicate that most cellular components exert their functions through interactions with other cellular components, such as proteins, DNAs, RNAs and small molecules. The rapidly increasing amount of publicly available data in biology and chemistry enables researchers to revisit interaction problems by systematic integration and analysis of heterogeneous data. Currently, some tools have been developed to represent these components.
View Article and Find Full Text PDFDrug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level.
View Article and Find Full Text PDFThe Caco-2 cell monolayer model is a popular surrogate in predicting the in vitro human intestinal permeability of a drug due to its morphological and functional similarity with human enterocytes. A quantitative structure-property relationship (QSPR) study was carried out to predict Caco-2 cell permeability of a large data set consisting of 1272 compounds. Four different methods including multivariate linear regression (MLR), partial least-squares (PLS), support vector machine (SVM) regression and Boosting were employed to build prediction models with 30 molecular descriptors selected by nondominated sorting genetic algorithm-II (NSGA-II).
View Article and Find Full Text PDFUnlabelled: Amino acid sequence-derived structural and physiochemical descriptors are extensively utilized for the research of structural, functional, expression and interaction profiles of proteins and peptides. We developed protr, a comprehensive R package for generating various numerical representation schemes of proteins and peptides from amino acid sequence. The package calculates eight descriptor groups composed of 22 types of commonly used descriptors that include about 22 700 descriptor values.
View Article and Find Full Text PDF