A two-year (2009-2011) field experiment was conducted to study the effects of different tillage modes, straw-returning, and their interactions on the soil total organic carbon (TOC) and labile organic carbon (LOC) components (easily oxidizable organic carbon (EOC), water-soluble organic carbon (WSOC), and microbial biomass carbon (MBC)) at the soil depths of 0-7, 7-14, and 14-21 cm in a farmland with rice-wheat double cropping. In all treatments of straw-returning, the TOC and LOC contents in each soil layer were significantly higher than those without straw-returning. Under plowing tillage, the MBC content in 0-7 cm soil layer was significantly higher than that under rotary tillage, but the EOC content was in adverse.
View Article and Find Full Text PDFBased on the organic carbon data of 222 topsoil samples taken from 38 paddy field experiment sites in South China, calculations were made on the relative annual change of topsoil organic carbon content (RAC) and carbon sequestration duration in the paddy fields in South China under five fertilization modes (inorganic nitrogen fertilization, N; inorganic nitrogen and phosphorus fertilization, NP; inorganic nitrogen, phosphorus, and potassium fertilization, NPK; organic fertilization, O; and inorganic plus organic fertilization, OF). The RAC under the fertilizations was 0-0.4 g x kg(-1) x a(-1), with an increment of 0.
View Article and Find Full Text PDF