In this research, we will present Al doped ZnO thin films for transparent conducting oxide applications. Aluminum doped zinc oxide (AZO) thin films have been deposited on the glass substrates by sol-gel spin-coating method using zinc acetate dehydrate (Zn(CH3COO)2 2H2O) and aluminum chloride hexahydrate (AlCl3 x 6H2O) as cation sources. In this study, we investigated the effects of near infrared ray (NIR) annealing on the structural, optical and electrical characteristics of the AZO thin films.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
May 2013
Transparent conducting oxide (TCO) materials with high transmittance and good electrical conductivity have been attracted much attention due to the development of electronic display and devices such as organic light emitting diodes (OLEDs), and dye-sensitized solar cells (DSSCs). Aluminum doped zinc oxide thin films (AZO) have been well known for their use as TCO materials due to its stability, cost-effectiveness, good optical transmittance and electrical properties. Especially, AZO thin film, which have low resistivity of 2-4 x 10(-4) omega x cm which is similar to that of ITO films with wide band gap semiconductors.
View Article and Find Full Text PDFNanoscale Res Lett
November 2012
We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol-gel spin-coating process.
View Article and Find Full Text PDFAluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed.
View Article and Find Full Text PDF