Publications by authors named "Min-Chi Lai"

Natural killer (NK) cells are potent innate immune cells that provide the surveillance and elimination of infected, stressed, and malignant cells. The unique immune recognition mechanisms and functions of NK cells make them an attractive cell type for immunology research and adoptive immunotherapy. However, primary NK cells are challenging to culture ex vivo and lack efficient genetic tools, hindering the research of NK cells and the development of NK cell therapeutics.

View Article and Find Full Text PDF

Genome editing is a powerful technique for delineating complex signaling circuitry and enhancing the functionality of immune cells for immunotherapy. Natural killer (NK) cells are potent immune effectors against cell malignancy, but they are challenging to modify genetically by conventional methods due to the toxicity of DNA when introduced into cells coupled with limited transfection and transduction efficiency. Here, we describe an integrated platform that streamlines feeder-free ex vivo expansion of cryopreserved primary human NK cells and nonviral genome editing by the nucleofection of CRISPR-Cas9 ribonucleoproteins (Cas9 RNPs).

View Article and Find Full Text PDF

Natural killer (NK) cells are an attractive cell-type for adoptive immunotherapy, but challenges in preparation of therapeutic primary NK cells restrict patient accessibility to NK cell immunotherapy. NK-92 is a well-characterized human NK cell line that has demonstrated promising anti-cancer activities in clinical trials. Unlimited proliferation of NK-92 cells provides a consistent supply of cells for the administration and development of NK cell immunotherapy.

View Article and Find Full Text PDF

The central nervous system (CNS) exhibits remarkable plasticity in early life and can be altered significantly by various prenatal influences. We previously showed that prenatal exposure to morphine altered kinetic properties of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic currents in the hippocampus of young rat offspring at the age of 14 days (P14). The present study further investigates whether NMDA receptor-mediated synaptic plasticity and/or cyclic adenosine monophosphate-responsive element-binding protein (CREBSerine-133), an important transcription factor underlying learning and memory, can be altered by prenatal morphine exposure in these offspring.

View Article and Find Full Text PDF