IEEE Trans Neural Netw Learn Syst
May 2022
Despite rapid advancements over the past several years, the conditional generative adversarial networks (cGANs) are still far from being perfect. Although one of the major concerns of the cGANs is how to provide the conditional information to the generator, there are not only no ways considered as the optimal solution but also a lack of related research. This brief presents a novel convolution layer, called the conditional convolution (cConv) layer, which incorporates the conditional information into the generator of the generative adversarial networks (GANs).
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
January 2021
Among the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, due to two stacked generative networks, the coarse-to-fine network needs numerous computational resources, such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called parallel extended-decoder path for semantic inpainting (PEPSI) network, which aims at reducing the hardware costs and improving the inpainting performance.
View Article and Find Full Text PDF