Selective recognition of short oligonucleotides at the single-molecule level is particularly important for early disease detection and treatment. In this work, polydopamine (PDA)-coated nanopores were prepared via self-polymerization as a solid-state nanopore sensing platform for the recognition of oligonucleotide C (PolyC). The PDA coating possesses abundant active sites, such as indole, amino, carboxyl, catechol, and quinone structures, which had interactions with short oligonucleotides to slow down the translocation rate.
View Article and Find Full Text PDFChem Asian J
November 2022
Nanopore technology is a burgeoning detection technology for single-molecular sensing and ion rectification. Solid-state nanopores have attracted more and more attention because of their higher stability and tunability than biological nanopores. However, solid-state nanopores still suffer the drawbacks of low signal-to-noise ratio and low resolution, which hinder their practical applications.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
October 2015
Objective: To explore the role of transient receptor potential canonical 1 (TRPC1) in airway remodeling and the effect of budesonide intervention on its expression in the lungs of guinea pigs with ovalbumin-induced asthma.
Methods: Fifty male guinea pigs were randomized into 5 equal groups, including a blank control group, ovalbumin group, ovalbumin+TRPC1 siRNA group, ovalbumin+luciferase siRNA group, and ovalbumin+budesonide group. After corresponding treatments, bronchoalveolar lavage was collected from the guinea pigs for eosinophils analysis and detection of IL-5 and IL-13 levels using ELISA.
In a recent study, we demonstrated that transient receptor potential melastatin 8 (TRPM8), a calcium-permeable cation channel that is activated by cold temperatures, is localized in the bronchial epithelium and is upregulated in subjects with chronic obstructive pulmonary disease, which causes them to be more sensitive to cold air. In the present study, we found that exposure to cold temperatures induced ciliary ultrastructural anomalies and mucus accumulation on the epithelial surface. Male Sprague-Dawley rats were exposed to cold temperatures to determine the effects of cold air on ultrastructural changes in cilia and the airway epithelial surface.
View Article and Find Full Text PDFObjective: To explore the mechanisms of mucus hypersecretion in airway of rats induced by the synergies between cold air and cigarette smoke inhalation and understand the intervention effects of saussurea and budesonide in this process.
Methods: A total of 70 SD rats were randomly divided into 7 groups. Group A: control; Group B: cold stimulation group receiving cold air inhalation for 3 h daily for 40 d; Group C: cigarette smoke inhalation group receiving cigarette smoke inhalation for 0.
Objective: To explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) in cold-induced production of inflammatory factors in airway epithelial cells and related signal transduction mechanism.
Methods: The 16HBE human airway epithelial cells were stimulated with cold temperature (18°C). In intervention experiments, cells were pretreated with TRPM8 channel antagonist BCTC, protein kinase C (PKC) specific inhibitor calphostin C and transfected with TRPM8 shRNA or control shRNA respectively, and thereafter cold stimulation was applied.
Background: Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD.
View Article and Find Full Text PDF