SmFeO3, a family of centrosymmetric rare-earth orthoferrites, is known to be nonferroelectric. However, we have found that SmFeO3 is surprisingly ferroelectric at room temperature with a small polarization along the b axis of Pbnm. First-principles calculations indicate that the canted antiferromagnetic ordering with two nonequivalent spin pairs is responsible for this extraordinary polarization and that the reverse Dzyaloshinskii-Moriya interaction dominates over the exchange-striction mechanism in the manifestation of the improper ferroelectricity.
View Article and Find Full Text PDFRecent studies on the ferroelectricity origin of YMnO(3), a prototype of hexagonal manganites (h-RMnO(3), where R is a rare-earth-metal element), reveal that the d(0)-ness of a Y(3+) ion with an anisotropic Y 4d-O 2p hybridization is the main driving force of ferroelectricity. InMnO(3) (IMO) also belongs to the h-RMnO(3) family. However, the d(0)-ness-driven ferroelectricity cannot be expected because the trivalent In ion is characterized by a fully filled 4d orbital.
View Article and Find Full Text PDF