Publications by authors named "Min Tang-Schomer"

Despite in vivo malignancy, ependymoma lacks cell culture models, thus limiting therapy development. Here, we used a tunable three-dimensional (3D) culture system to approximate the ependymoma microenvironment for recapitulating a patient's tumor in vitro. Our data showed that the inclusion of VEGF in serum-free, mixed neural and endothelial cell culture media supported the in vitro growth of all four ependymoma patient samples.

View Article and Find Full Text PDF

Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.

View Article and Find Full Text PDF

Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses.

View Article and Find Full Text PDF

Brain access remains a major challenge in drug testing. The nearly 'impermeable' blood-brain-barrier (BBB) prevents most drugs from gaining access to brain cells via systematic intravenous (IV) injection. In this study, silk fibroin films were used as drug carrier as well as cell culture substrate to simulate the in vivo interface between drug reservoir and brain cells for testing drug delivery in the brain.

View Article and Find Full Text PDF

Three-dimensional in vitro cell culture models, particularly for the central nervous system, allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. Here we describe the development and characterization of three-dimensional tissue models that promote the differentiation and long-term survival of functional neural networks. These tissue cultures show diverse cell populations including neurons and glial cells (astrocytes) interacting in 3D with spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least 8 months.

View Article and Find Full Text PDF

Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of cultures.

View Article and Find Full Text PDF

We propose a novel nondestructive, label-free, mechanical characterization method for composite biomimetic materials. The method combines microscale-force measurement, bright-field microscopy based deformation analysis, and finite-element methods (FEM) to study the heterogeneity in bioengineered composite materials. The method was used to study silk fibroin protein based, donut-shaped scaffolds consisting of a shell (diameter 5 mm) and a core (diameter 2 mm) with a stiff-core or a soft-core configuration.

View Article and Find Full Text PDF

Background: Juvenile pilocytic astrocytomas represent the largest group of pediatric brain tumors. The ideal management for these tumors is early, total surgical resection. To detect and track treatment response, a screening tool is needed to identify patients for surgical evaluation and assess the quality of treatment.

View Article and Find Full Text PDF

Axon growth and alignment are fundamental processes during nervous system development and neural regeneration after injury. The present study investigates the effects of exogenous stimulus of electrical signals and soluble factors on axon 3D growth, using a silk protein material-based 3D brain tissue model. Electrical stimulus was delivered via embedded gold wires positioned at the interface of the scaffold region and the center matrix gel-filled region, spanning the axon growth area.

View Article and Find Full Text PDF

The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine.

View Article and Find Full Text PDF

Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex.

View Article and Find Full Text PDF

A bioengineered model of 3D brain-like tissue was developed using silk-collagen protein scaffolds seeded with primary cortical neurons. The scaffold design provides compartmentalized control for spatial separation of neuronal cell bodies and neural projections, which resembles the layered structure of the brain (cerebral cortex). Neurons seeded in a donut-shaped porous silk sponge grow robust neuronal projections within a collagen-filled central region, generating 3D neural networks with structural and functional connectivity.

View Article and Find Full Text PDF

Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels.

View Article and Find Full Text PDF

Neural engineering provides promise for cell therapy by integrating the host brain with brain-machine-interface technologies in order to externally modulate functions. Long-term interfaces with the host brain remain a critical challenge due to insufficient graft cell survivability and loss of brain electrode sensitivity over time. Here, integrated neuron-electrode interfaces were developed on thin flexible and transparent silk films as brain implants.

View Article and Find Full Text PDF

The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function.

View Article and Find Full Text PDF

Tunable protein composites are important for constructing extracellular matrix mimics of human tissues with control of biochemical, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys (mixtures of silk and tropoelastin) with different net charges. These new biomaterials are then utilized as a biomaterial platform to control neuron cell response.

View Article and Find Full Text PDF

Peripheral nervous system injuries result in a decreased quality of life, and generally require surgical intervention for repair. Currently, the gold standard of nerve autografting, based on the use of host tissue such as sensory nerves is suboptimal as it results in donor-site loss of function and requires a secondary surgery. Nerve guidance conduits fabricated from natural polymers such as collagen are a common alternative to bridge nerve defects.

View Article and Find Full Text PDF

The cortical circuitry in the brain consists of structurally and functionally distinct neuronal assemblies with reciprocal axon connections. To generate cell culture-based systems that emulate axon tract systems of an in vivo neural network, we developed a living neural circuit consisting of compartmentalized neuronal populations connected by arrays of two millimeter-long axon tracts that are integrated on a planar multi-electrode array (MEA). The millimeter-scale node-to-node separation allows for pharmacological and electrophysiological manipulations to simultaneously target multiple neuronal populations.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation.

View Article and Find Full Text PDF

As a common feature of many neurological diseases and injury, the loss of axon pathways can have devastating effects on function. Here, we demonstrate a new strategy to restore damaged axon pathways using transplantable miniature constructs consisting of living neurons and axonal tracts internalized within hydrogel tubes. These hydrogel microconduits were developed through an iterative process to support neuronal survival and directed axon growth.

View Article and Find Full Text PDF

Due to their viscoelastic nature, white matter axons are susceptible to damage by high strain rates produced during traumatic brain injury (TBI). Indeed, diffuse axonal injury (DAI) is one of the most common features of TBI, characterized by the hallmark pathological profiles of axonal bulbs at disconnected terminal ends of axons and periodic swellings along axons, known as "varicosities." Although transport interruption underlies axonal bulb formation, it is unclear how varicosities arise, with multiple sites accumulating transported materials along one axon.

View Article and Find Full Text PDF

Traumatic axonal injury (TAI) is the most common and important pathology of traumatic brain injury (TBI). However, little is known about potential indirect effects of TAI on dendrites. In this study, we used a well-established in vitro model of axonal stretch injury to investigate TAI-induced changes in dendrite morphology.

View Article and Find Full Text PDF

Little is known about which components of the axonal cytoskeleton might break during rapid mechanical deformation, such as occurs in traumatic brain injury. Here, we micropatterned neuronal cell cultures on silicone membranes to induce dynamic stretch exclusively of axon fascicles. After stretch, undulating distortions formed along the axons that gradually relaxed back to a straight orientation, demonstrating a delayed elastic response.

View Article and Find Full Text PDF

This work describes a method to bond patterned macromolecular gels into monolithic structures using perturbants. Bonding strengths for a variety of solutes follow a Hofmeister ordering; this result and optical measurements indicate that bonding occurs by reversible perturbation of contacting gels. The resulting microfluidic gels are mechanically robust and can serve as scaffolds for cell culture.

View Article and Find Full Text PDF