Herein, we introduce novel 1-dimensional nano-chained FeCo particles with unusually-high permeability prepared by a highly-productive thermal plasma synthesis and demonstrate an electromagnetic wave absorber with exceptionally low reflection loss in the high-frequency regime (1-26 GHz). During the thermal plasma synthesis, spherical FeCo nanoparticles are first formed through the nucleation and growth processes; then, the high temperature zone of the thermal plasma accelerates the diffusion of constituent elements, leading to surface-consolidation between the particles at the moment of collision, and 1-dimensional nano-chained particles are successfully fabricated without the need for templates or a complex directional growth process. Systematic control over the composition and magnetic properties of FexCo1-x nano-chained particles also has been accomplished by changing the mixing ratio of the Fe-to-Co precursors, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
The longitudinal spin Seebeck effects with a ferro- or ferrimagnetic insulator provide a new architecture of a thermoelectric device that could significantly improve the energy conversion efficiency. Until now, epitaxial yttrium iron garnet (YIG) films grown on gadolinium gallium garnet (GGG) substrates by a pulsed laser deposition have been most widely used for spin thermoelectric energy conversion studies. In this work, we developed a simple route to obtain a highly uniform solution-processed YIG film and used it for the on-chip microelectronic spin Seebeck characterization.
View Article and Find Full Text PDFBare and ZrO2-coated LiCoO2 thin films were fabricated by direct current magnetron sputtering method on STS304 substrates. Deposited both films have a well-crystallized structure with (003) preferred orientation after annealing at 600 degrees C. The ZrO2-coated LiCoO2 thin film provide significantly improved cycling stability compared to bare LiCoO2 thin film at high cut-off potential (3.
View Article and Find Full Text PDF