The dsDNA-selective fluorescent-dye-based DNA damage assay was developed for DNA-encoded library (DEL) synthesis. For the various DEL synthesis conditions, the assay was validated through cross-checking with high-performance liquid chromatography (HPLC) analysis, and the fact was confirmed that the usage of a specific ratio of organic solvent can critically induce DNA damage. Also, the applicability of the assay was confirmed through the screening of the DNA-damaging condition of the on-DNA amide coupling reaction and Pd-catalyzed on-DNA -arylation reaction.
View Article and Find Full Text PDFX-ray fluorescence (XRF) is widely used to analyze elemental distributions in samples. Micro-XRF (µ-XRF), the most basic conventional XRF technique, offers good spatial resolution through precise 2D scanning with a micrometre-sized X-ray source. Recently, synchrotron based XRF analysis platforms have achieved nano-XRF with highly focused X-rays using polycapillary optics or mirrors, leveraging the excellent coherence of synchrotron radiation.
View Article and Find Full Text PDFDirect amidation of carboxylic acids with amines holds significant importance; therefore, catalytic processes involving boronic acids have undergone extensive investigation. However, studies focused on the amidation of aromatic carboxylic acids remain limited. In this study, we introduce a fluorescence-based screening methodology employing an anthracene derivative probe, facilitating the rapid evaluation of various amidation catalysts.
View Article and Find Full Text PDFAccurate hydrogen sulfide (HS) detection has attracted much attention because its toxicity may affect aquatic environments and human health. However, recognizing HS levels by conventional fluorescent probes in turbid wastewater has been challenging because the opaque environment interferes with their photophysical properties. To overcome this limitation, a fluorous-tagging strategy can be used for the development of fluorescent sensors to detect HS in turbid solutions.
View Article and Find Full Text PDFBoric acid (B(OH)) plays an important physiological role and is widely used as a food preservative and an antiseptic. Various colorimetric, fluorescent probes have been developed to detect boric acid; however, most of them could not discriminate boric acid over boronic acids (R-B(OH)) or are limited to boronic acid sensors. Therefore, the development of boric acid-selective probes is necessary.
View Article and Find Full Text PDFFor surveilling human health, industries, and the environment, pH monitoring is important. Numerous studies on fluorescent probes have been conducted to monitor various pH ranges. However, fluorescent probes that are capable of sensing alkaline regions are rare.
View Article and Find Full Text PDFHetero-dinuclear synergic catalysis is a promising approach for improving catalytic performance. However, employing it is challenging because the design principles for the metal complex are still not well understood. Further, these complexes have a broader set of possibilities than mononuclear or homometallic systems, increasing the time and effort required to understand them.
View Article and Find Full Text PDFSimultaneous detection, which helps understand complex physiological processes and accurately diagnose diseases, has been achieved using dual responsive probes. The dual responsive probe can ideally distinguish four cases, which are a combination of the absence and presence of two analytes, with characteristic fluorescence emissions. Owing to the demanding conditions of its development, most previous studies have focused on the simple linkage between small-molecule chemosensors that have an individual target and spectral range.
View Article and Find Full Text PDFTo improve the peel strength and holding time of polypropylene glycol (PPG)-based pressure-sensitive adhesives (PSAs), a semi-interpenetrating polymer network (semi-IPN) was prepared using acrylic polymers. In addition, to prevent air pollution due to volatile organic compound emissions and avoid the degradation of physical properties due to a residual solvent, the PPG-based semi-IPN PSAs were fabricated by an eco-friendly solvent-free method using an acrylic monomer instead of an organic solvent. PPG-based semi-IPN PSAs with different hard segment contents (2.
View Article and Find Full Text PDFF NMR spectroscopy has been widely used as a convenient and noninvasive analytical technique for understanding complex natural phenomena at the atomic level. However, current NMR referencing techniques are most optimized for H NMR, which causes some limitations while referencing heteronuclear NMR. Despite its promising advantages, F NMR spectroscopy often exhibits large variations in experimental results and lacks consistency compared with H NMR.
View Article and Find Full Text PDFThe detection of pH is important owing to its significance in various processes, such as clinical and industrial processes. Numerous fluorescent pH probes have been developed using a variety of fluorophores; however, most are only suitable for application in a narrow pH range (between 5 and 8) owing to the lack of diversity of the pH-sensitive units. Furthermore, probes suitable for sensing high pHs have rarely been studied despite the importance of reliable detection of high pH in various industrial processes.
View Article and Find Full Text PDFThe fluctuation of the halide ion concentration in human serum is of a high clinical implication. The measurement of Cl in human serum samples is important because Cl is a major constituent of human serum and certain Cl levels are indicators of many acute diseases. Real-time monitoring of Br levels in human serum samples from patients ingesting Br salt-based antiepileptic drugs is important to regulate potential adverse drug effects.
View Article and Find Full Text PDFA ratiometric and selective hydrogen sulfide (HS) detection probe was proposed based on the pyrene-DPA-Cd complex through the metal ion displacement approach (MDA) mechanism. While most MDA-based fluorescence probes with paramagnetic Cu have focused on the development of a simple turn-on sensor using the broad spectral range of fluorescence enhancement, this ratiometric probe exhibited unchanged monomer emission as a built-in internal reference with an increase in excimer emission with added HS. The demonstrated probe showed a rapid response (within 1 min) and a high sensitivity, with 70 nM as the limit of detection.
View Article and Find Full Text PDFNumerous assays based on peroxidase activity have been developed for the detection of analytes due to the various optical peroxidase substrates. However, most substrates are sensitive to light and pH and are over-oxidized in the presence of excess HO. In this study, 2-((6-methoxynaphthalen-2-yl)methylene)-1,1-dimethylhydrazine (MNDH), a fluorescent peroxidase substrate prepared from naphthalene-based aldehyde ,-dimethylhydrazone, was developed.
View Article and Find Full Text PDFA real-time kinase assay method based on a ratiometric fluorescence probe that can be applied to various small-molecule kinases is described herein. The probe can trace the reversible interchange of ATP and ADP, which is a common phenomenon in most small-molecule kinase reactions, by a ratiometric fluorescence change. This property facilitates the monitoring of phosphorylation and dephosphorylation in small-molecule kinases, whereas most of the existing methods focus on one of these reactions.
View Article and Find Full Text PDFIn this study, we developed a metal-free and highly chemoselective method for the reduction of aromatic nitro compounds. This reduction was performed using tetrahydroxydiboron [B(OH)] as the reductant and 4,4'-bipyridine as the organocatalyst and could be completed within 5 min at room temperature. Under optimal conditions, nitroarenes with sensitive functional groups, such as vinyl, ethynyl, carbonyl, and halogen, were converted into the corresponding anilines with excellent selectivity while avoiding the undesirable reduction of the sensitive functional groups.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2021
Efficient and selective targeting of inflamed tissues/organs is critical for diagnosis and therapy. Although nanomaterials themselves have an intrinsic advantage due to their size for targeting inflammation sites, additional functionalization of the nanomaterials with proper targeting moieties is desired to enhance the targeting efficiency. In this study, we aimed to improve the inflammation targeting characteristics of a pluronic-based nanocarrier, which has advantages as a nanosized delivery cargo for diverse molecules, by conjugating with chitosan and ZnBPMP (two Zn(II) ions chelated 2,6-bis[(bis(2-pyridylmethyl)amino)-methyl]-4-methylphenol) moiety.
View Article and Find Full Text PDFChem Commun (Camb)
September 2021
We described an analyte-activatable artificial peroxidase system (caged Mn(bpmp)) by caging a dimanganese complex, exhibiting peroxidase-like activity, with an analyte-reactive trigger. It allowed adjustments of the detection target to be applied depending on the trigger as well as the detection modes, such as fluorescence and colorimetric, as required. This system was successfully applied to a versatile enzyme assay for leucine aminopeptidase and γ-glutamyl transpeptidase based on spectrophotometric change induced from the oxidation of the peroxidase substrate by analyte-triggered peroxidase-like activity.
View Article and Find Full Text PDFMetal-free photoredox-catalyzed carbocarboxylation of various styrenes with carbon dioxide (CO2) and amines to obtain γ-aminobutyric ester derivatives has been developed (up to 91% yield, 36 examples). The radical anion of (2,3,4,6)-3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBnBN) possessing a high reduction potential (-1.72 V vs.
View Article and Find Full Text PDFDevelopment of a simple, effective, and practical method for (Z)-selective semihydrogenation of alkynes has been considered necessary for easy-to-access applications at organic laboratory scales. Herein, (Z)-selective semihydrogenation of alkynes was achieved using a copper nanocatalyst which was generated in situ simply by adding ammonia borane to an ethanol solution of copper sulfate. Different types of alkynes including aryl-aryl, aryl-alkyl, and aliphatic alkynes were selectively reduced to (Z)-alkenes affording up to 99% isolated yield.
View Article and Find Full Text PDFAims: Spinal cord injury (SCI) above the sacral level causes bladder dysfunction and remodeling with fibrosis. This study examined the antifibrotic effects using nintedanib, an inhibitor of vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor receptors, on detrusor overactivity (DO) and bladder fibrosis, as well as the modulation mechanisms of C-fiber afferent pathways.
Methods: Thirty female C57BL/6 mice were divided into group A (spinal intact), group B (SCI with vehicle), and group C (SCI with nintedanib).
Hypoxic environment is essential for chondrocyte maturation and longitudinal bone growth. Although hypoxia-inducible factor 1 alpha (Hif-1α) has been known as a key player for chondrocyte survival and function, the function of Hif-2α in cartilage is mechanistically and clinically relevant but remains unknown. Here we demonstrated that Hif-2α was a novel inhibitor of chondrocyte maturation through downregulation of Runx2 stability.
View Article and Find Full Text PDFA simple paper-based analytical device (PAD) for the one-pot detection of glucose was developed herein using an artificial peroxidase-functionalized and glucose oxidase (GOx)-loaded pluronic-based nanocarrier (PNC). MnBPMP (BPMP; 2,6-bis[(bis(2-pyridylmethyl)amino)-methyl]-4-methylphenolate), an artificial peroxidase, was conjugated to PNC, allowing GOx to be loaded with a very high encapsulation efficiency. In solution, MnBPMP-PNC showed higher peroxidase-like catalytic efficiency than did MnBPMP at physiological pH.
View Article and Find Full Text PDFSelective detection of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) which are less charged molecules than adenosine triphosphate (ATP) or pyrophosphate (PPi) in aqueous solution has been considered challenging because AMP and ADP have relatively low binding affinity for phosphate receptors. In this study, colorimetric discrimination of nucleoside phosphates was achieved based on catalytic signal amplification through the activation of artificial peroxidase. This method showed high selectivity for AMP and ADP over ATP and PPi, unlike previous phosphate sensors that use Zn-dipicolylamine-based receptors.
View Article and Find Full Text PDF