Persistent inflammation has been associated with severe disc degeneration (DD). This study investigated the effect of prolonged nuclear factor κB (NF-κB) activation in DD. Using an inducible mouse model, we genetically targeted cells expressing aggrecan, a primary component of the disc extra cellular matrix, for activation of the canonical NF-κB pathway.
View Article and Find Full Text PDFBackground: Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP) worldwide. Sexual dimorphism, or sex-based differences, appear to exist in the severity of LBP. However, it is unknown if there are sex-based differences in the inflammatory, biomechanical, biochemical, and histological responses of intervertebral discs (IVDs).
View Article and Find Full Text PDFObjective: Low back pain (LBP) is the leading cause of global disability and is thought to be driven primarily by intervertebral disc (IVD) degeneration (DD). Persistent upregulation of catabolic enzymes and inflammatory mediators have been associated with severe cases of DD. Nuclear factor kappa B (NF-κB) is a master transcription regulator of immune responses and is over expressed during inflammatory-driven musculoskeletal diseases, including DD.
View Article and Find Full Text PDFThe intervertebral disk (IVD) is a composite structure essential for spine stabilization, load bearing, and movement. Biomechanical factors are important contributors to the IVD microenvironment regulating joint homeostasis; however, the cell type-specific effectors of mechanotransduction in the IVD are not fully understood. The current study aimed to determine the effects of cyclic tensile strain (CTS) on annulus fibrosus (AF) cells and identify mechano-sensitive pathways.
View Article and Find Full Text PDFBack pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD.
View Article and Find Full Text PDF