Vascular diseases are complex conditions orchestrated by multiple factors, including cellular components, biochemical stimuli, and mechanical forces. Despite the advancement of numerous therapeutic approaches, the global mortality associated with the diseases continues to escalate owing to a lack of understanding of the underlying pathologies. Tissue engineering and computational strategies have been recently developed to investigate diseased blood vessels from multifactorial perspective, enabling more accurate prediction of disease progression and opening new avenues for preclinical advances.
View Article and Find Full Text PDFA critical bottleneck toward all-solid-state batteries lies in how the solid(electrode)-solid(electrolyte) interface is fabricated and maintained over repeated cycles. Conventional composite cathodes, with crystallographically distinct electrode/electrolyte interfaces of random particles, create complexities with varying (electro)chemical compatibilities. To address this, we employ an epitaxial model system where the crystal orientations of cathode and solid electrolyte are precisely controlled, and probe the interfaces in real-time during co-sintering by in situ electron microscopy.
View Article and Find Full Text PDFThis study aims to evaluate the safety of MK-7 produced by fermentation process using a Bacillus subtilis var. natto strain for human ingestion via acute oral toxicity, repeated dose 90-day oral toxicity, 28-day recovery test, and genotoxicity tests. The acute oral toxicity test results indicated that all subjects survived at the dose of 5000 mg/kg with no toxic effects.
View Article and Find Full Text PDFGelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink.
View Article and Find Full Text PDFRecent studies have focused on exploring the potential of resistive random-access memory (ReRAM) utilizing halide perovskites as novel data storage devices. This interest stems from its notable attributes, including a high ON/OFF ratio, low operating voltages, and exceptional mechanical properties. Nevertheless, there have been reports indicating that memory systems utilizing halide perovskites encounter certain obstacles pertaining to their stability and dependability, mostly assessed through endurance and retention time.
View Article and Find Full Text PDFPerovskite materials have garnered significant attention over the past decades due to their applications, not only in electronic materials, such as dielectrics, piezoelectrics, ferroelectrics, and superconductors but also in optoelectronic devices like solar cells and light emitting diodes. This interest arises from their versatile combinations and physiochemical tunability. While strain engineering is a recognized powerful tool for tailoring material properties, its collaborative impact on both oxides and halides remains understudied.
View Article and Find Full Text PDFHuman skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models.
View Article and Find Full Text PDFMass production of green hydrogen water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance.
View Article and Find Full Text PDFNoble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS flakes by the solution process without using reducing agents.
View Article and Find Full Text PDFAs one of the effort to cope with the energy crisis and carbon neutrality, utilization of low-grade energy generated indoors (e.g., light) is imperative because this saves building and house energy, which accounts for ≈40% of total energy consumption.
View Article and Find Full Text PDFWater electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically.
View Article and Find Full Text PDFThe water-based renewable chemical energy cycle has attracted interest due to its role in replacing existing non-renewable resources and alleviating environmental issues. Utilizing the semi-infinite solar energy source is the most appropriate way to sustain such a water-based energy cycle by producing and feeding hydrogen and oxygen. For production, an efficient photoelectrode is required to effectively perform the photoelectrochemical water splitting reaction.
View Article and Find Full Text PDFRecently developed fabrication methods for inorganic patterns (such as laser printing and optical lithography) can avoid some patterning processes conducted by conventional etching and lithography (such as substrate etching and modulation) and are thereby useful for applications in which the substrates and materials must not be damaged during patterning. Simultaneously, it is also necessary to develop facile and economical methods producing inorganic patterns on various substrates without requiring a special apparatus while attaining the above-mentioned advantages. The present study proposes a reaction-based method for fabricating inorganic patterns by immersing substrates coated with a colloidal nanosheet into an aqueous solution containing inorganic precursors.
View Article and Find Full Text PDFNumerous studies have explored new materials for electrocatalysts, but it is difficult to discover materials that surpass the catalytic activity of current commercially available noble metal electrocatalysts. In contrast to conventional transition metal alloys, high-entropy alloys (HEAs) have immense potential to maximize their catalytic properties because of their high stability and compositional diversity as oxygen evolution reactions (OERs). This work presents medium-entropy alloys (MEAs) as OER electrocatalysts to simultaneously satisfy the requirement of high catalytic activity and long-term stability.
View Article and Find Full Text PDFFormation of type II heterojunctions is a promising strategy to enhance the photoelectrochemical performance of water-splitting photoanodes, which has been tremendously studied. However, there have been few studies focusing on the formation of type II heterojunctions depending on the thickness of the overlayer. Here, enhanced photoelectrochemical activities of a FeO film deposited-BiVO/WO heterostructure with different thicknesses of the FeO layer have been investigated.
View Article and Find Full Text PDFAs the BO octahedral structure in perovskite oxide is strongly linked with electronic behavior, it is actively studied for various fields such as metal-insulator transition, superconductivity, and so on. However, the research about the relationship between water-splitting activity and BO structure is largely lacking. Here, we report the oxygen evolution reaction (OER) of LaNiO (LNO) by changing the NiO structure using compositional change and strain.
View Article and Find Full Text PDFOrganometallic and all-inorganic halide perovskites (HPs) have recently emerged as promising candidate materials for resistive switching (RS) nonvolatile memory due to their current-voltage hysteresis caused by fast ion migration. Lead-free and all-inorganic HPs have been researched for non-toxic and environmentally friendly RS memory devices. However, only HP-based devices with electrochemically active top electrode (TE) exhibit ultra-low operating voltages and high on/off ratio RS properties.
View Article and Find Full Text PDFRechargeable metal-ion batteries are considered promising electric storage systems to meet the emerging demand from electric vehicles, electronics, and electric grids. Thus far, secondary Li-ion batteries (LIBs) have seen great advances in terms of both their energy and their power density. However, safety issues remain a challenge.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs) have attracted enormous attention in diverse research fields. Especially, gas sensors are considered in a promising application exploiting TMDs. However, the studies are confined to only major TMDs such as MoS and WS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2019
P-N heterostructures based on transition-metal dichelcongenides (TMDs) and a conventional semiconductor, such as p-Si, have been considered a promising structure for next-generation electronic devices and applications. However, synthesis of high-quality, wafer-scale TMDs, particularly WS on p-Si, is challenging. Herein, we propose an efficient method to directly grow WS crystals on p-Si via a hybrid thermolysis process.
View Article and Find Full Text PDFAn important factor in the performance of photoelectrochemical water splitting is the band edge alignment of the photoelectrodes for efficient transport and transfer of photogenerated carriers. Many studies for improving charge transfer ability between the electrode and the electrolyte have been reported, while research to improve charge transfer at the interface of the photoactive semiconductor and the conducting substrate is largely lacking. Here, we demonstrate that the water-splitting performance of an oxide heterostructured photoelectrode can be increased 6-fold by inserting an atomically thin polar LaAlO interlayer compared with that of an oxide heterostructure without an insertion to modify interfacial band offsets.
View Article and Find Full Text PDFWater-based drilling mud (WBM) is a non-Newtonian fluid that has a variety of applications such as in transporting cuttings during drilling, protecting the borehole, and cooling the drill bit. With the development of nano-technology, various nanoparticles have been synthesized and have been added to WBM to improve its performance. Shear thinning is the most important factor in drilling mud and this attribute can be improved when two-dimensional particles are added.
View Article and Find Full Text PDFObjectives: hnRNP A2/B1 has been identified as a target antigen of anti-endothelial cell IgA antibody in patients with Behçet's disease (BD). In addition, increased expression of cellular hnRNP A2/B1 is stimulated by Streptococcus sanguinis or the sera from patients with BD. We aimed to investigate the effects of cilostazol on the expression of hnRNP A2/B1 and chemokines in human dermal microvascular endothelial cells (HDMECs).
View Article and Find Full Text PDFWhen crystalline ZnO films with a thickness of 30 nm and hydrophilic properties were deposited at room temperature onto a glass substrate via radio frequency sputtering, they exhibited antifingerprinting qualities following annealing treatment that was simple and accomplished at low temperature (100 °C). Hydrophobic properties were achieved using as-deposited ZnO films with hydrophilic properties via annealing treatment without the deposition of a protective layer with hydrophobic properties. The annealed 30 nm ZnO films showed a high transmittance (∼91.
View Article and Find Full Text PDF