Publications by authors named "Min Joong Kim"

High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support.

View Article and Find Full Text PDF

Anion exchange membrane water electrolysis (AEMWE) offers a sustainable path for hydrogen production with advantages such as high current density, dynamic responsiveness, and low-cost electrocatalysts. However, the development of efficient and durable oxygen evolution reaction (OER) electrocatalysts under operating conditions is crucial for achieving the AEMWE. This study systematically investigated Fe-Co-Ni ternary amorphous electrocatalysts for the OER in AEMWE through a comprehensive material library system comprising 21 composition series.

View Article and Find Full Text PDF

Herein, a heterogeneous structure of Ni-Mo catalyst comprising NiMo nanoalloys decorated on a MoO matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm (η and η) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER.

View Article and Find Full Text PDF

The efficient evolution of gaseous hydrogen and oxygen from water is required to realize sustainable energy conversion systems. To address the sluggish kinetics of the multielectron transfer reaction, bifunctional catalyst materials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) should be developed. Herein, a tailored combination of atomically minimized iridium catalysts and highly conductive black WO nanofiber supports are developed for the bifunctional electrolyzer system.

View Article and Find Full Text PDF

Organ-selective drug delivery is expected to maximize the efficacy of various therapeutic modalities while minimizing their systemic toxicity. Lipid nanoparticles and polymersomes can direct the organ-selective delivery of mRNAs or gene editing machineries, but their delivery is limited to mostly liver, spleen, and lung. A platform that enables delivery to these and other target organs is urgently needed.

View Article and Find Full Text PDF

Hydrogen generation through the hydrolysis of aluminum alloys has attracted significant attention because it generates hydrogen directly from alkaline water without the need for hydrogen storage technology. The hydrogen generation rate from the hydrolysis of aluminum in alkaline water is linearly proportional to its corrosion rate. To accelerate the corrosion rate of the aluminum alloy, we designed Al-Ni alloys by continuously precipitating an electrochemically noble AlNi phase along the grain boundaries.

View Article and Find Full Text PDF

This work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes.

View Article and Find Full Text PDF

The automobile industry has developed dramatically in recent years, the supply of vehicles has also increased, and thus it has become deeply established in everyday life. Recently, as the supply of vehicles with autonomous driving functions increases, the safety of vehicles is also an emerging issue. Various car-following models for the safe driving of vehicles have long been studied by various people, and recently, a Responsibility-Sensitive Safety (RSS) model has been proposed by Mobileye.

View Article and Find Full Text PDF

The induced co-electrodeposition of Ni and Mo is a complex process, where metallic Ni-Mo alloys and Ni-Mo-O composites can originate from the complete and partial reduction of Mo respectively. By adjusting electrolyte compositions and electrodeposition parameters, various metallic, metal/oxide composite, and oxide thin films of Ni-Mo and Ni-Mo-O were electrodeposited from ammonium citrate baths. Ni-ammonia complexes, which play a critical role in promoting the deposition of metallic Ni-Mo alloys, were enhanced at alkaline pH ( 8-10) and lower temperature (, 25-45°C).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how complexing agents like ammonium and citrate affect the electrodeposition of nickel-molybdenum (Ni-Mo) alloys by calculating metal species concentrations based on pH and ion concentrations.
  • Linear sweep voltammetry and Hull cell experiments were conducted to analyze how varying the current density and ammonium-to-citrate ratio influences the film's composition, structure, and crystallinity.
  • Results showed that the presence of Ni(NH) is crucial for the co-deposition of Ni-Mo alloys, leading to a shift from smooth amorphous deposits to globular nanocrystalline structures as the ammonium-to-citrate ratio changes, with significant amounts of molybdenum and oxygen detected in the composites.*
View Article and Find Full Text PDF

Objectives: This study aims to evaluate the efficacy and safety of two types of sandblasted with large-grit and acid-etched (SLA) surface implants with different surface roughness. Patients and.

Methods: This study was conducted based on a clinical record review of 55 patients (mean age, 53.

View Article and Find Full Text PDF

Background: This study was performed to evaluate the long-term clinical efficacy of the CA implants (Osstem Implant, Busan, Korea), calcium-modified surfaced treated implants on acid-etched surfaces sandblasted with alumina.

Methods: From January 2013 to December 2015, 258 implants of 120 patients placed between 2013 and 2015 were retrospectively studied. Using medical records and periapical radiographs, sex, age, location, fixture width and length of placed implants, presence or absence of bone graft, types of bone substitutes and membrane used for bone grafting, primary and secondary stability, initial and delayed complications, and marginal bone loss were investigated.

View Article and Find Full Text PDF

Alkaline water electrolysis (AWE) is a mature water electrolysis technology that can produce green hydrogen most economically. This is mainly attributed to the use of Ni-based materials that are easy to process and inexpensive. The nickel-based meshes with various structures such as woven mesh and expanded mesh are widely used as electrode in the AWE due to its common availability and easy fabrication.

View Article and Find Full Text PDF

Today, a lot of research on autonomous driving technology is being conducted, and various vehicles with autonomous driving functions, such as ACC (adaptive cruise control) are being released. The autonomous vehicle recognizes obstacles ahead by the fusion of data from various sensors, such as lidar and radar sensors, including camera sensors. As the number of vehicles equipped with such autonomous driving functions increases, securing safety and reliability is a big issue.

View Article and Find Full Text PDF

The intermittent and volatile nature of renewable energy sources threatens the stable operation of power grids, necessitating dynamically operated energy storage. Power-to-gas technology is a promising method for managing electricity variations on a large gigawatt (GW) scale. The electrolyzer is a key component that can convert excess electricity into hydrogen with high flexibility.

View Article and Find Full Text PDF

Background: The aim of this study was to evaluate the long-term clinical stability of implants with acid-etched surfaces sandblasted with alumina using retrospective analyses of the survival rate, success rate, primary and secondary stability, complications, and marginal bone loss of the implants.

Methods: Patients who had implants placed (TS III SA, SS II SA, SS III SA, and U III SA) with SA surfaces from Osstem (Osstem Implant Co., Busan, Korea) at the Seoul National University Bundang Hospital, from January 2008 to December 2010 were selected for the study.

View Article and Find Full Text PDF

Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C).

View Article and Find Full Text PDF

This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO (Nb-TiO) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at.

View Article and Find Full Text PDF

Hydrogen produced using the steam reforming process contains sulfur and carbon monoxide that are harmful to the Pt catalyst in proton-exchange-membrane fuel cells (PEMFCs). However, CO-free hydrogen can be generated from the hydrolysis of either Al in strongly alkaline water or Mg in neutral water with chlorides such as sea water. The hydrogen generation rate from the hydrolysis of Mg is extremely slow and linearly proportional to the corrosion rate of Mg in chloride water.

View Article and Find Full Text PDF

The membrane electrolyte assembly (MEA) designed in this study utilizes a double-layered cathode: an inner catalyst layer prepared by a conventional decal transfer method and an outer catalyst layer directly coated on a gas diffusion layer. The double-layered structure was used to improve the interfacial contact between the catalyst layer and membrane, to increase catalyst utilization and to modify the removal of product water from the cathode. Based on a series of MEAs with double-layered cathodes with an overall Pt loading fixed at 0.

View Article and Find Full Text PDF

Three-dimensional porous Sb/Sb2 O3 anode materials are successfully fabricated using a simple electrodeposition method with a polypyrrole nanowire network. The Sb/Sb2 O3 -PPy electrode exhibits excellent cycle performance and outstanding rate capabilities; the charge capacity is sustained at 512.01 mAh g(-1) over 100 cycles, and 56.

View Article and Find Full Text PDF

Alopecia neoplastica is defined as hair loss secondary to a visceral malignancy that has metastasized to the scalp. The scalp is a relatively common site of cutaneous metastasis, usually presenting as a single or multiple firm scalp nodules. Alopecia neoplastica is a well-recognized but rare presentation, and its pathogenesis is incompletely understood.

View Article and Find Full Text PDF

Background: Fractional photothermolysis is a popular treatment option for photorejuvenation. Previous literature studies have demonstrated the clinical effectiveness of fractional photothermolysis on cutaneous photoaging; however, the associated changes in biophysical properties of the skin following fractional photothermolysis have not been fully elucidated. This study was conducted to investigate the temporal changes in biophysical parameters after fractional laser treatment on Asian skin.

View Article and Find Full Text PDF