Publications by authors named "Min Jae Do"

Recently, there has been growing interest in replacing severely damaged salivary glands with artificial salivary gland functional units created in vitro by tissue engineering approaches. Although various materials such as poly(lactic--glycolic acid), polylactic acid, poly(glycolic acid), and polyethylene glycol hydrogels have been used as scaffolds for salivary gland tissue engineering, none of them is effective enough to closely recapitulate the branched structural complexity and heterogeneous cell population of native salivary glands. Instead of discovering new biomaterial candidates, we synthesized hyaluronic acid-catechol (HACA) conjugates to establish a versatile hyaluronic acid coating platform named "NiCHE (nature-inspired catechol-conjugated hyaluronic acid environment)" for boosting the salivary gland tissue engineering efficacy of the previously reported biomaterials.

View Article and Find Full Text PDF

Phenol derivative-containing adhesive hydrogels has been widely recognized as having potential for biomedical applications, but their conventional production methods, utilizing a moderate/strong base, alkaline buffers, the addition of oxidizing agents or the use of enzymes, require alternative approaches to improve their biocompatibility. In this study, we report a polymeric, enzyme-mimetic biocatalyst, hematin-grafted chitosan (chitosan-g-hem), which results in effective gelation without the use of alkaline buffers or enzymes. Furthermore, gelation occurs under mild physiological conditions.

View Article and Find Full Text PDF

Purpose: An animal periodontitis model is essential for research on the pathogenesis and treatment of periodontal disease. In this study, we have introduced a lipopolysaccharide (LPS) of a periodontal pathogen to the alveolar bone defect of experimental animals and investigated its suitability as a periodontitis model.

Methods: Alveolar bone defects were made in both sides of the mandibular third premolar region of nine beagle dogs.

View Article and Find Full Text PDF

Magnetic nanoparticles have gained significant attention as a therapeutic agent for cancer treatment. Herein, we developed chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes (Chito-FIONs) as an effective heat nanomediator for cancer hyperthermia. Dynamic light scattering and transmission electron microscopic analyses revealed that Chito-FIONs were composed of multiple 30-nm-sized FIONs encapsulated by a chitosan polymer shell.

View Article and Find Full Text PDF