Sorafenib, a potent anticancer drug, has low absorption in the gastrointestinal tract due to its poor aqueous solubility. The main purpose of this investigation was to design sorafenib nanoparticle using a newly developed technique, nanoparticulation using fat and supercritical fluid (NUFS™) to improve the absorption of sorafenib. The quality by design (QbD) tool was adopted to define the optimal formulation variables: hydroxypropyl methyl cellulose (HPMC), polyvinyl pyrrolidone K30 (PVP), and poloxamer.
View Article and Find Full Text PDFBackground: Lenalidomide is used for the treatment of multiple myeloma in combination with dexamethasone. The purpose of this study was to compare the pharmacokinetics (PKs) and assess the bioequivalence of two formulations of lenalidomide 25 mg: Lenalid 25 mg tablet (test formulation) and Revlimid 25 mg capsule (reference formulation).
Methods: A randomized, single-dose, two-treatment, two-period, two-sequence crossover study was conducted in 42 healthy subjects.
We assessed the efficacy of the polymeric nanoparticle containing docetaxel (PNP-DTX) in preclinical mouse models and determined the maximum tolerated dose (MTD) through clinical study. Subcutaneous and orthotopic mouse models were dedicated. Tumor growth delay in orthotopic model and quantification of in vivo imaging in orthotopic model were evaluated.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
September 2012
Purpose: To reduce the side effects and improve the efficacy of chemoradiation therapy, taxanes were incorporated into polymeric nanoparticles (PNP), and their synergic effect on radiation therapy in non-small cell lung cancer was evaluated.
Methods And Materials: The properties of PNP-taxanes were characterized by transmission electron microscopy and dynamic light scattering. The chemoradiotherapeutic efficacy of PNP-taxanes was determined by clonogenic assay, cellular morphology, and flow cytometry in A549 cells.
Nanoparticles are useful delivery vehicles for promising drug candidates that face obstacles for clinical applicability. Sirolimus, an inhibitor of mammalian target of rapamycin has gained attention for targeted anticancer therapy, but its clinical application has been limited by its poor solubility. This study was designed to enhance the feasibility of sirolimus for human cancer treatment.
View Article and Find Full Text PDFNanoxel-PM™, docetaxel-loaded methoxy-poly(ethylene glycol)-block-poly(d,l-lactide) (mPEG-PDLLA) micellar formulation was prepared in an effort to develop alternative, less toxic and efficacious Tween 80-free docetaxel formulation, and its pharmacokinetics, efficacy, and toxicity were evaluated in comparison with Taxotere® in preclinical studies. The mean diameter of the Nanoxel-PM™ was 10-50 nm and the polydispersity of samples exhibited a narrow size distribution and monodisperse unimodal pattern. Pharmacokinetic study in mice, rats and beagle dogs revealed that Nanoxel-PM™ exhibited similar pharmacokinetic profiles (C(max), AUC, t(1/2), CL, V(ss)) to Taxotere, and the relative mean AUC(t) and C(max) of Nanoxel-PM™ to Taxotere® were within 80-120%.
View Article and Find Full Text PDFPurpose: In this study, we have prepared a novel polymeric drug delivery system comprised of ionically fixed polymeric nanoparticles (IFPN) and investigated their potential as a drug carrier for the passive targeting of water-insoluble anticancer drugs.
Materials And Methods: For this purpose, the physicochemical characteristics of the IFPN were investigated by comparing them with conventional polymeric micelles. IFPN containing paclitaxel were prepared and evaluated for in vitro stability and in vivo pharmacokinetics.
A mixed polymeric micelle formulation of itraconazole (ITZ-PM) was prepared using monomethoxy poly(ethylene glycol)-b-poly(lactic acid) and poly(lactic acid) as drug carrier materials. The ITZ-PM formulation remarkably increased the itraconazole solubility up to 15 mg/mL in aqueous media and provided stable solutions at a wide range of concentrations and pH's. In toxicity studies of single and 28-day repeated administrations to rats and dogs, ITZ-PM was well tolerated at dose levels corresponding to clinical doses.
View Article and Find Full Text PDFPurpose: To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin.
Methods: A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized.
Purpose: The purpose of this work was to replace Cremophor-EL in the commercial paclitaxel intravenous formulation, Taxol, using a novel high-throughput combinatorial formulation approach.
Methods: Full factorial combinations of 12 generally regarded as safe excipients at three different concentrations were screened using an automated liquid dispenser. The hit formulations were further optimized to give the final optimized formulation TPI-1.