Heterotrophic nitrification, similar to autotrophic nitrification, involves key enzymes and reactive nitrogen intermediates during ammonia oxidation, which may influence antibiotic transformation. However, the interference between antibiotic transformation products from ammonia oxidation and secondary metabolites in heterotrophic nitrifiers makes antibiotic transformation pathways more complicated. In this work, we observe that the heterotrophic nitrifier Alcaligenes ammonioxydans HO-1 can effectively convert sulfonamide antibiotics.
View Article and Find Full Text PDFResearch (Wash D C)
November 2024
Background: To assess the value of urological ultrasound in predicting the risk of spontaneous passage of ureteral stones.
Methods: Clinical and ultrasound data were collected consecutively from patients receiving conservative treatment for ureteral stones, and the outcome of spontaneous passage was followed up for 1 month. Ultrasound variables independently associated with the risk of spontaneous stone passage were screened.
Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the -cleavage activity of Cas12a and recombinase polymerase amplification (RPA).
View Article and Find Full Text PDFBacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH → NH OH → N , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear.
View Article and Find Full Text PDFBackground: Genetic variations in Sestrin2/Sestrin3/ mTOR axis may cause obesity-associated metabolic syndrome, including lipid accumulation and insulin resistance thereby increasing individual's risk of diabetes. In this study, we explored the association between single nucleotide polymorphisms (SNPs) of these genes and new onset diabetes after transplantation in Hispanic renal transplant recipients (RTRs).
Methods: Nine potential functional polymorphisms in Sestrin2, Sestrin3 and mTOR genes were genotyped using the Taqman qPCR method in this study.
Antimony (Sb) is a toxic substance that poses a serious ecological threat when released into the environment. The species and redox state of Sb determine its environmental toxicity and fate. Understanding the redox transformations and biogeochemical cycling of Sb is crucial for analyzing and predicting its environmental behavior.
View Article and Find Full Text PDFRationale: Only 20 cases of pediatric primary renal non-Hodgkin's lymphoma have been reported since 1995, rare cases and a variety of imaging manifestations have led to difficulties in its diagnosis and treatment.
Patient Concerns: Herein, we share in detail a case of primary renal lymphoma (PRL) in a child and summarize the common clinical manifestations, imaging features, and prognostic factors of pediatric PRL by retrospectively analyzing cases reported in the literature. A 2-year-old boy presented to the clinic with a large mass on the right side of his abdomen along with loss of appetite.
Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity.
View Article and Find Full Text PDFDissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet.
View Article and Find Full Text PDFThe microbial metabolism of arsenic plays a prominent role in governing the biogeochemical cycle of arsenic. Although diverse microbes are known to be involved in the redox transformation of inorganic arsenic, the underlying mechanisms about the arsenic redox cycle mediated by a single microbial strain remain unclear yet. Herein, we discover that CN32, a well-known arsenate-respiring and dissimilatory metal-reducing bacterium, could mediate the reversible arsenic redox transformation under aerobic conditions.
View Article and Find Full Text PDFAquatic environments are important reservoirs of antibiotic wastes, antibiotic resistance genes, and bacteria, enabling the persistence and proliferation of antibiotic resistance in different bacterial populations. To prevent the spread of antibiotic resistance, effective approaches to detect antimicrobial susceptibility in aquatic environments are highly desired. In this work, we adopt a metabolism-based bioorthogonal noncanonical amino acid tagging (BONCAT) method to detect, visualize, and quantify active antimicrobial-resistant bacteria in water samples by exploiting the differences in bacterial metabolic responses to antibiotics.
View Article and Find Full Text PDFObjectives: Measuring anatomical parameters in fetal heart ultrasound images is crucial for the diagnosis of congenital heart disease (CHD), which is highly dependent on the clinical experience of the sonographer. To address this challenge, we propose an automated segmentation method using the channel-wise knowledge distillation technique.
Methods: We design a teacher-student architecture to conduct channel-wise knowledge distillation.
Genomic integration techniques offer opportunities for generation of engineered microorganisms with improved or even entirely new functions but are currently limited by inability for efficient insertion of long genetic payloads due to multiplexing. Herein, using Shewanella oneidensis MR-1 as a model, we developed an optimized CRISPR-associated transposase from cyanobacteria Scytonema hofmanni (ShCAST system), which enables programmable, RNA-guided transposition of ultra-long DNA sequences (30 kb) onto bacterial chromosomes at ∼100% efficiency in a single orientation. In this system, a crRNA (CRISPR RNA) was used to target multicopy loci like insertion-sequence elements or combining I-SceI endonuclease, thereby allowing efficient single-step multiplexed or iterative DNA insertions.
View Article and Find Full Text PDFEnviron Sci Technol
March 2022
Functional material synthesis through biomineralization is effective and environmentally friendly. Biomineralized manganese (Mn) oxides are important for remediation and energy storage. Manganese(II) biomineralization is achieved by a diverse group of bacteria.
View Article and Find Full Text PDFAntimicrobial-resistant pathogens in the environment and wastewater treatment systems, many of which are also important pollutant degraders and are difficult to control by traditional disinfection approaches, have become an unprecedented treat to ecological security and human health. Here, we propose the adoption of genetic editing techniques as a highly targeted, efficient and simple tool to control the risks of environmental pathogens at the source. An 'all-in-one' plasmid system was constructed in Aeromonas hydrophila to accurately identify and selectively inactivate multiple key virulence factor genes and antibiotic resistance genes via base editing, enabling significantly suppressed bacterial virulence and resistance without impairing their normal phenotype and pollutant-degradation functions.
View Article and Find Full Text PDFMembers of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored.
View Article and Find Full Text PDFDissimilatory metal-reducing bacteria (DMRB) with extracellular electron transfer (EET) capability show great potential in bioremediating the subsurface environments contaminated by uranium through bioreduction and precipitation of hexavalent uranium [U(VI)]. However, the low EET efficiency of DMRB remains a bottleneck for their applications. Herein, we develop an engineered CRISPR platform to drive the extracellular electron pumping of , a representative DMRB species widely present in aquatic environments.
View Article and Find Full Text PDFSmall testicular solid lesions are discovered accidentally due to the extensive use of ultrasound in urology and andrology. Early differentiation between benign and malignant testicular neoplasms is crucial for the determination of treatment options, especially for sub-centimetre lesions. We report a case of a male patient with an incidental discovery of a small testicular lesion on ultrasonography with the chief complaint of left testicular discomfort.
View Article and Find Full Text PDFThe high toxicity and prevalence of arsenic in the environment have aroused increasing research interest in understanding the mechanisms of microbial arsenic resistance. A wide spectrum of arsenic resistant microbes with ability of arsenic bio-transformation has been isolated from arsenic-contaminated environments. However, arsenic resistance processes and reduction abilities of microbes under various growth conditions remain poorly understood.
View Article and Find Full Text PDFShewanella oneidensis MR-1, a model strain of exoelectrogenic bacteria (EEB), plays a key role in environmental bioremediation and bioelectrochemical systems because of its unique respiration capacity. However, only a narrow range of substrates can be utilized by S. oneidensis MR-1 as carbon sources, resulting in its limited applications.
View Article and Find Full Text PDFBackground: BK virus nephropathy (BKVN) is a major complication in kidney transplant patients. This study aimed to investigate the efficacy of intravenous immunoglobulin (IVIG) therapy against persistent BKVN and to evaluate the association between persistent BKVN and Fc gamma receptor (FcγR) single nucleotide polymorphisms (SNPs).
Methods: A total of 86 patients out of 279 kidney recipients with BKVN were investigated in a single-center retrospective study.
Shewanella oneidensis MR-1, a model species of exoelectrogenic bacteria (EEB), has been widely applied in bioelectrochemical systems. Biofilms of EEB grown on electrodes are essential in governing the current output and power density of bioelectrochemical systems. The MR-1 genome is exceptionally dynamic due to the existence of a large number of insertion sequence (IS) elements.
View Article and Find Full Text PDFspecies are indigenous in diverse aquatic environments and play important roles in environmental remediation. However, the pollutant transformation mechanisms of these bacteria remain elusive, and their potential in pollution control is largely unexploited so far. In this work, we report an efficient and simple genome regulation tool to edit and identify its biomolecular pathways for pollutant transformation.
View Article and Find Full Text PDF