Publications by authors named "Mimi Lin"

Dry eye disease is a common condition that affects the eyes. It is caused by problems with the tear film and the tear dynamics. Dry eye can be caused by an increase in the amount of reactive oxygen species (ROS) in the corneal epithelium.

View Article and Find Full Text PDF

Cu-SSZ-13 suffers activity loss after hydrothermal treatment at high temperatures, particularly above 850 °C. The stability of Cu-SSZ-13 can be enhanced by compositing with H-SAPO-34. This work investigates the effect of aging temperature on the composites.

View Article and Find Full Text PDF

The efficient regeneration of corneal nerves is of limited success in the field of ophthalmology. This work reports the use of a non-invasive electrical stimulation technique that uses a transparent graphene-based corneal stimulation electrode and that can achieve efficient regeneration of corneal nerves. The corneal stimulation electrode is prepared using electroactive nitrogen-containing conducting polymers such as polyaniline functionalized graphene (PAG).

View Article and Find Full Text PDF

The noninvasive and real-time detection of glucose sugar from tears is promising for the early diagnosis and treatment of chronic diseases such as diabetes. However, its realization is a big challenge. A suitable biosensor electrode that can closely fit the eye and be electrochemically sensitive is still unrealized.

View Article and Find Full Text PDF

Tumorous metastasis is a difficult challenge to resolve for researchers and for clinicians. Targeted delivery of antitumor drugs towards tumor cells' nuclei can be a practical approach to resolving this issue. This work describes an efficient nuclear-targeting delivery system prepared from trans-activating transcriptional activator (TAT) peptide-functionalized graphene nanocarriers.

View Article and Find Full Text PDF

Interpenetrating network structures from Graphene foam (GF) and 58S bioactive glass (BG) are synthesized to combine the highly mechanical stability and conductivity from graphene with the superb bioactivity and biocompatibility from 58S BG. GF/58S BG scaffolds were prepared via multiple steps including chemical vapor deposition (CVD), spin-coating, and freeze drying methods. Simulated body fluid test confirms the highly bioactivity of the as-synthesized GF/58S BG scaffold after incorporating of sol-gel derived 58S BG.

View Article and Find Full Text PDF

The regeneration of neurons is an important goal of neuroscience and clinical medicine. The electrical stimulation of cells is a promising technique to meet this goal. However, its efficiency highly depends on the electrochemical properties of the stimulation electrodes used.

View Article and Find Full Text PDF

The synthesis of transferrin (Tf)-modified pegylated graphene (PG) and its application as a highly efficient drug delivery carrier for therapy of Ocular Choroidal Melanoma-1 (OCM-1) cells is presented. For the first reported time, nanoscaled PG is prepared using an environmentally friendly ball-milling technique. The unique 2D nanostructure obtained using this PG synthesis approach offers considerable advantages in terms of drug loading and delivery, as well as the conjugation of Tf to PG providing a more targeted delivery vehicle.

View Article and Find Full Text PDF

An efficient and targeted treatment for tumor cells is demonstrated. This targeting is based upon the strong affinity between hydroxyl-functional groups on graphene and acidic tumors. The hydroxylated graphene (GOH) with a unique 2D architecture further improve the targeting capacity of the system via an enhanced permeability and retention (EPR) process.

View Article and Find Full Text PDF

Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated.

View Article and Find Full Text PDF

Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypic responses to chemicals can be mapped to genes associated with those responses, which may in turn suggest adverse outcome pathways associated with those genes. To determine the utility of this approach, we used the Drosophila Genetics Reference Panel (DGRP), a collection of ∼200 homozygous lines of fruit flies whose genomes have been sequenced.

View Article and Find Full Text PDF

A facile, but effective, method has been developed for large-scale preparation of NaLa(MoO4)2 nanorods and microflowers co-doped with Eu(3+) and Tb(3+) ions (abbreviated as: NLM:Ln(3+)). The as-synthesized nanomaterials possess a pure tetragonal phase with variable morphologies from shuttle-like nanorods to microflowers by controlling the reaction temperature and the amount of ethylene glycol used. Consequently, the resulting nanomaterials exhibit superb luminescent emissions over the visible region from red through yellow to green by simply changing the relative doping ratios of Eu(3+) to Tb(3+) ions.

View Article and Find Full Text PDF

We have presented our recent efforts on genotoxicity and intraocular biocompatibility of hydroxylated graphene (G-OH) prepared by ball milling. We have previously demonstrated that the as-synthesized G-OH could be considered as an excellent alternative for graphene oxide which had been applied widely. Following our last report on G-OH, we carried out detailed studies on genotoxicity and in vivo biocompatibility of G-OH in this work.

View Article and Find Full Text PDF

The 3T3-L1 preadipocyte culture system has been used to examine numerous compounds that influence adipocyte differentiation or function. The perfluoroalkyl acids (PFAAs), used as surfactants in a variety of industrial applications, are of concern as environmental contaminants that are detected worldwide in human serum and animal tissues. This study was designed to evaluate the potential for PFAAs to affect adipocyte differentiation and lipid accumulation using mouse 3T3-L1 cells.

View Article and Find Full Text PDF

As graphene becomes one of the most exciting candidates for multifunctional biomedical applications, contact between eyes and graphene-based materials is inevitable. On the other hand, eyes, as a special organ in the human body, have unique advantages to be used for testing new biomedical research and development, such as drug delivery. Intraocular biocompatible studies on graphene-related materials are thus essential.

View Article and Find Full Text PDF

Purpose: Eyelid development is a dynamic process involving cell proliferation, differentiation, and migration regulated by a number of growth factors and cytokines. Mice deficient in the orphan G protein-coupled receptor 48 (GPR48) showed an eye open at birth (EOB) phenotype. In this study, the authors attempted to clarify the role of GPR48 in eyelid development and the molecular mechanisms leading to the EOB phenotype.

View Article and Find Full Text PDF

An 81-year-old female presented with weight loss as a result of her multiple comorbidities, including a history of congestive heart failure (CHF), coronary artery disease, paroxysmal atrial fibrillation, myocardial infarction, pulmonary embolism, and stroke. She has experienced deep-venous thrombosis in her right leg, severe depression, and dementia and also has suffered a right tibial and fibular fracture. All of these comorbidites and her medication regimen complicated the issue of weight loss.

View Article and Find Full Text PDF