This study investigates magnetic ordering temperature in nano- and mesoscale structural features in an iron arsenide. Although magnetic ground states in quantum materials can be theoretically predicted from known crystal structures and chemical compositions, the ordering temperature is harder to pinpoint due to potential local lattice variations that calculations may not account for. In this work we find surprisingly that a locally disordered material can exhibit a significantly larger Néel temperature (T) than an ordered material of precisely the same chemical stoichiometry.
View Article and Find Full Text PDF