Publications by authors named "Mima T"

In transcranial static magnetic field stimulation (tSMS), a strong and small magnet placed over the head can modulate cortical functions below the magnet as well as those in the region remote from the magnet. We studied the neuromodulation induced by tSMS using transcranial magnetic stimulation (TMS) combined with simultaneous electroencephalography (EEG) to clarify the neurophysiological underpinnings of tSMS. tSMS or sham stimulation was applied over the left primary motor cortex (M1) for 20 min in 15 healthy subjects.

View Article and Find Full Text PDF
Article Synopsis
  • * The study tested whether transcranial static magnetic field stimulation (tSMS) could lower rFPA activity and reduce SFA during speech tasks in university students with social anxiety.
  • * Results showed that tSMS successfully decreased rFPA activity and SFA related to bodily sensations, while also improving perspectives focused on the external environment, suggesting tSMS could be a potential treatment for SAD.
View Article and Find Full Text PDF

Over one-third of stroke survivors develop aphasia, and language dysfunction persists for the remainder of their lives. Brain language network changes in patients with aphasia. Recently, it has been reported that phase synchrony within a low beta-band (14-19 Hz) frequency between Broca's area and the homotopic region of the right hemisphere is positively correlated with language function in patients with subacute post-stroke aphasia, suggesting that synchrony is important for language recovery.

View Article and Find Full Text PDF

Magnetic fields are being used for detailed anatomical and functional examination of the human brain. In addition, evidence for their efficacy in treatment of brain dysfunctions is accumulating. Transcranial static magnetic field stimulation (tSMS) is a recently developed technique for noninvasively modifying brain functions.

View Article and Find Full Text PDF

Background: Transcranial static magnetic stimulation (tSMS) is a non-invasive brain stimulation technique that place a strong neodymium magnet on scalp to reduce cortical excitability. We have recently developed a new tSMS device with three magnets placed close to each other (triple tSMS) and confirmed that this new device can produce a stronger and broader static magnetic field than the conventional single tSMS. The aim of the present study was to investigate the effect of the conventional single tSMS as well as triple tSMS over the unilateral or bilateral motor association cortex (MAC) on simple and choice reaction time (SRT and CRT) task performance.

View Article and Find Full Text PDF

Background: Total laryngectomy is a surgical procedure to completely remove the hyoid bone, larynx, and associated muscles as a curative treatment for laryngeal cancer. This leads to insufficient swallowing function with compensative movements of the residual tongue to propel the food bolus to the pharynx and esophagus. However, the neurophysiological mechanisms of compensative swallowing after total laryngectomy remain unclear.

View Article and Find Full Text PDF

Background: Transcutaneous electrical sensory nerve stimulation (TESS) is used to enhance the recovery of sensorimotor function in post-stroke hemiparesis. However, TESS efficacy for post-stroke gait disturbance remains unknown. We hypothesized that TESS on the area innervated by the tibial nerve, targeting the superficial plantar sensation, combined with gait training would improve gait function in patients with gait disturbance caused by severe superficial sensory disturbance after stroke.

View Article and Find Full Text PDF

Objective: Gait disturbance lowers activities of daily living in patients with Parkinson's disease (PD) and related disorders. However, the effectiveness of pharmacological, surgical and rehabilitative treatments is limited. We recently developed a novel neuromodulation approach using gait-combined closed-loop transcranial electrical stimulation (tES) for healthy volunteers and patients who are post-stroke, and achieved significant entrainment of gait rhythm and an increase in gait speed.

View Article and Find Full Text PDF

Objectives: This study aimed to update the current knowledge on non-invasive brain stimulation (NIBS) effects, such as repetitive transcranial brain stimulation and transcranial direct current stimulation, in patients with post-stroke dysphagia (PSD).

Methods: We summarized the basic principles and therapeutic strategies of NIBS. We then reviewed nine meta-analyses from 2022 that investigated the efficacy of NIBS in PSD rehabilitation.

View Article and Find Full Text PDF

Objective: Developing new therapies to improve motor function in patients with severe chronic stroke remains a major focus of neurorehabilitation. In this prospective, non-controlled, pilot study, we aimed to investigate the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with occupational therapy (OT) on the motor function recovery of the affected upper limb in chronic stroke patients with severe upper limb hemiparesis.

Methods: Consecutive patients (n = 40) diagnosed with chronic stroke (time since stroke, ≥1 year) and upper limb hemiparesis were enrolled in this study.

View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is characterized by recurrent falls caused by postural instability, and a backward gait is considered beneficial for postural instability. Furthermore, a recent approach for rehabilitation combined with gait-oriented synchronized stimulation using non-invasive transcranial patterned stimulation could be promising for balance function. Here, we present a case of PSP with backward gait training combined with gait-synchronized transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Transcranial static magnetic stimulation (tSMS) is known to influence behavioral and neural activities. However, although the left and right dorsolateral prefrontal cortex (DLPFC) are associated with different cognitive functions, there remains a lack of knowledge on a difference in the effects of tSMS on cognitive performance and related brain activity between left and right DLPFC stimulations. To address this knowledge gap, we examined how differently tSMS over the left and right DLPFC altered working memory performance and electroencephalographic oscillatory responses using a 2-back task, in which subjects monitor a sequence of stimuli and decide whether a presented stimulus matches the stimulus presented two trials previously.

View Article and Find Full Text PDF

Most post-stroke patients have long-lasting gait disturbances that reduce their daily activities. They often show impaired hip and knee joint flexion and ankle dorsiflexion of the lower limbs during the swing phase of gait, which is controlled by the corticospinal tract from the primary motor cortex (M1). Recently, we reported that gait-synchronized closed-loop brain stimulation targeting swing phase-related activity in the affected M1 can improve gait function in post-stroke patients.

View Article and Find Full Text PDF

Background: Transcranial static magnetic field stimulation (tSMS) using a small and strong neodymium (NdFeB) magnet can temporarily suppress brain functions below the magnet. It is a promising non-invasive brain stimulation modality because of its competitive advantages such as safety, simplicity, and low-cost. However, current tSMS is insufficient to effectively stimulate deep brain areas due to attenuation of the magnetic field with the distance from the magnet.

View Article and Find Full Text PDF

Dysphagia is a severe disability affecting daily life in patients with amyotrophic lateral sclerosis (ALS). It is caused by degeneration of both the bulbar motor neurons and cortical motoneurons projecting to the oropharyngeal areas. A previous report showed decreased event-related desynchronization (ERD) in the medial sensorimotor areas in ALS dysphagic patients.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) activity within the primary motor cortex (M1) is essential for motor learning in cortical plasticity, and a recent study has suggested that real-time neurofeedback training (NFT) can self-regulate GABA activity. Therefore, this study aimed to investigate the effect of GABA activity strengthening via NFT on subsequent motor learning. Thirty-six healthy participants were randomly assigned to either an NFT group or control group, which received sham feedback.

View Article and Find Full Text PDF

People with high empathy interpret others' mental states in daily social interactions. To investigate their characteristics of social cognitive processing, we compared neuromagnetic activities between 20 males with high empathy and 23 males with low empathy while watching social interactions between two characters. Twenty stories of four-panel comic strips were presented; the first three panels described social interactions, and the last panel described empathic/nonempathic behaviors.

View Article and Find Full Text PDF

Background: Brain-computer interface (BCI) is a procedure involving brain activity in which neural status is provided to the participants for self-regulation. The current review aims to evaluate the effect sizes of clinical studies investigating the use of BCI-based rehabilitation interventions in restoring upper extremity function and effective methods to detect brain activity for motor recovery.

Methods: A computerized search of MEDLINE, CENTRAL, Web of Science, and PEDro was performed to identify relevant articles.

View Article and Find Full Text PDF

Swallowing in humans involves many cortical areas although it is partly mediated by a series of brainstem reflexes. Cortical motor commands are sent to muscles during swallow. Previous works using magnetoencephalography showed event-related desynchronization (ERD) during swallow and corticomuscular coherence (CMC) during tongue movements in the bilateral sensorimotor and motor-related areas.

View Article and Find Full Text PDF

Patients with cortical reflex myoclonus manifest typical neurophysiologic characteristics due to primary sensorimotor cortex (S1/M1) hyperexcitability, namely, contralateral giant somatosensory-evoked potentials/fields and a C-reflex (CR) in the stimulated arm. Some patients show a CR in both arms in response to unilateral stimulation, with about 10-ms delay in the non-stimulated compared with the stimulated arm. This bilateral C-reflex (BCR) may reflect strong involvement of bilateral S1/M1.

View Article and Find Full Text PDF

Background: Rare neuromuscular diseases such as spinal muscular atrophy, spinal bulbar muscular atrophy, muscular dystrophy, Charcot-Marie-Tooth disease, distal myopathy, sporadic inclusion body myositis, congenital myopathy, and amyotrophic lateral sclerosis lead to incurable amyotrophy and consequent loss of ambulation. Thus far, no therapeutic approaches have been successful in recovering the ambulatory ability. Thus, the aim of this trial was to evaluate the efficacy and safety of cybernic treatment with a wearable cyborg Hybrid Assistive Limb (HAL, Lower Limb Type) in improving the ambulatory function in those patients.

View Article and Find Full Text PDF