Publications by authors named "Milton Brian Traw"

Grain size is one of the most frequently selected traits during domestication and modern breeding. The continued discovery and characterization of new genes and alleles in controlling grain size are important in safeguarding the food supply for the world's growing population. Previously, a small grain size was observed in a rice restorer line 'Fuhui212', while the underlying genetic factors controlling this trait were unknown.

View Article and Find Full Text PDF

Plants are thought to lack an early segregating germline and often retain both asexual and sexual reproduction, both of which may allow somatic mutations to enter the gametes or clonal progeny, and thereby impact plant evolution. It is yet unclear how often these somatic mutations occur during plant development and what proportion is transmitted to their sexual or cloned offspring. Asexual "seedless" propagation has contributed greatly to the breeding in many fruit crops, such as citrus, grapes and bananas.

View Article and Find Full Text PDF

The introduction of frameshifting non-3n indels enables the identification of gene-trait associations. However, it has been hypothesised that recovery of the original reading frame owing to usage of non-canonical splice forms could cause rescue. To date there is very little evidence for organism-level rescue by such a mechanism and it is unknown how commonly indels induce, or are otherwise associated with, frame-restoring splice forms.

View Article and Find Full Text PDF

Whole genome duplication (WGD) in plants is typically followed by genomic downsizing, where large portions of the new genome are lost. Whether this downsizing is accompanied by increased or decreased evolutionary rates of the remaining genes is poorly known, not least because homeolog pairings are often obscured by chromosomal rearrangement. Here, we use the newly published genome from a sedge, namely Kobresia littledalei, and CRISPR/Cas-9 editing to investigate how the Rho WGD event 70 million years ago (MYA) affected transcription factor evolutionary rates, fates, and function in rice (Oryza sativa) and sorghum (Sorghum bicolor).

View Article and Find Full Text PDF
Article Synopsis
  • Mitotic gene conversion is often underestimated in its impact on allelic diversity, especially compared to the more commonly studied meiotic gene conversion.
  • A study of 1.1 million rice plants revealed that while mitotic gene conversion occurs at a much lower rate than meiotic conversion per division, the sheer number of mitotic divisions can make their overall contributions similar.
  • The findings suggest that for organisms with numerous mitotic divisions before meiosis, such as plants and yeast, mitotic gene conversion should be recognized as a significant factor in genetic variation.
View Article and Find Full Text PDF

Comparative genomic analysis within Asian cultivated rice (Oryza sativa L.) populations has greatly enriched our knowledge regarding rice domestication and the divergence of the indica and japonica subspecies, while study on genomic regions associated with improvement within the indica subspecies is still limited. Here, through combined investigation of 2,429 indica cultivar genomes from public sequencing projects, we depict the improvement of modern indica rice in China.

View Article and Find Full Text PDF

We have isolated several Osiaa23 rice mutants with different knockout genotypes, resulting in different phenotypes, which suggested that different genetic backgrounds or mutation types influence gene function. The Auxin/Indole-3-Acetic Acid (Aux/IAA) gene family performs critical roles in auxin signal transduction in plants. In rice, the gene OsIAA23 (Os06t0597000) is known to affect development of roots and shoots, but previous knockouts in OsIAA23 have been sterile and difficult for research continuously.

View Article and Find Full Text PDF

Recombination during meiosis plays an important role in genome evolution by reshuffling existing genetic variations into fresh combinations with the possibility of recovery of lost ancestral genotypes. While crossover (CO) events have been well studied, gene conversion events (GCs), which represent non-reciprocal information transfer between chromosomes, are poorly documented and difficult to detect due to their relatively small converted tract size. Here, we document these GC events and their phenotypic effects at an important locus in rice containing the SD1 gene, where multiple defective alleles contributed to the semi-dwarf phenotype of rice in the 'Green Revolution' of the 1960s.

View Article and Find Full Text PDF