Resorcinol-formaldehyde based carbon aerogel (CA) has been tailored to meet the requirements as a Fe-N-C carbon support, aiming to provide sufficient, inexpensive cathode catalysts for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Therefore, different treatments of the aerogel are explored for optimal pore structure and incorporation of surface functionalities, which are crucial for Fe-N-C synthesis and electrochemical performance. Fe-N-Cs of differently modified aerogel are investigated in phosphoric acid electrolyte.
View Article and Find Full Text PDFTailoring the properties of cellulose aerogel beads was investigated in the present study by using weak organic acids as coagulants. Three different weak acids were specifically chosen, acetic acid, lactic acid and citric acid. For comparative studies, a strong acid, hydrochloric acid was examined.
View Article and Find Full Text PDFIn previous work of this group, a structural lightweight concrete was developed by embedding silica aerogel granules in a high-strength cement matrix. This concrete, called high-performance aerogel concrete (HPAC), is a lightweight building material characterized by its simultaneous high compressive strength and very low thermal conductivity. Besides these features, high sound absorption, diffusion permeability, water repellence and fire resistance qualify HPAC as an interesting material for the construction of single-leaf exterior walls without any further insulation.
View Article and Find Full Text PDFOrganic aerogels in the form of powder, microgranules and microsized particles receive considerable attention due to their easy fabrication, low process time and costs compared to their monolithic form. Here, we developed resorcinol-formaldehyde (RF) aerogel microparticles by using an emulsion-gelation method. The main objective of this study is to investigate the influence of curing time, stirring rate, RF sol:oil ratio and initial pH of the sol in order to control the size and properties of the microparticles produced.
View Article and Find Full Text PDFThe structural features in silica aerogels are known to be modelled effectively by the diffusion-limited cluster-cluster aggregation (DLCA) approach. In this paper, an artificial neural network (ANN) is developed for predicting the fractal properties of silica aerogels, given the input parameters for a DLCA algorithm. This approach of machine learning substitutes the necessity of first generating the DLCA structures and then simulating and characterising their fractal properties.
View Article and Find Full Text PDFThe pore-size distributions play a critical role in the determination of the properties of nanoporous cellular materials like aerogels. In this paper, we propose a micromechanical model, and by further designing artificial normal pore-size distributions, we inspect their effect on the macroscopic stress-strain curves. We show that the location of the mean pore size as well as the broadness of the distribution strongly affects the overall macroscopic behavior.
View Article and Find Full Text PDFTo address the challenge of reconstructing or designing the three-dimensional microstructure of nanoporous materials, we develop a computational approach by combining the random closed packing of polydisperse spheres together with the Laguerre-Voronoi tessellation. Open-porous cellular network structures that adhere to the real pore-size distributions of the nanoporous materials are generated. As an example, κ-carrageenan aerogels are considered.
View Article and Find Full Text PDFDue to the current energy crises, the search for thermal energy management systems based on thermal insulating porous materials has drawn a significant deal of attention. Herein, we demonstrated the thermal insulation and management capabilities of cuttlefish bone mimetic aerogels with hierarchically organized porous structures directly fabricated from surface-modified and self-assembled silk fibroin (SF) biopolymer extracted from silkworm cocoon biomass; hereafter, the materials developed referred to as X-. Exploiting from creating an interpenetrating network of the secondary ceramic components of various one-, two-, and three-dimensional sepiolite (MgHSiO·HO), MXene (TiCT), and silica nanostructures inside the self-assembled SF biopolymer and subsequent uni-directional freeze-casting and drying the resulted hydrogels, composites with aerogel features were obtained.
View Article and Find Full Text PDFMechanical properties of aerogels are controlled by the connectivity of their network. In this paper, in order to study these properties, computational models of silica aerogels with different morphological entities have been generated by means of the diffusion-limited cluster-cluster aggregation (DLCA) algorithm. New insights into the influence of the model parameters on the generated aerogel structures and on the finite deformation under mechanical loads are provided.
View Article and Find Full Text PDFWithin this study, monolithic three-dimensional silica aerogel (SA) composite parts with super insulating properties are presented. A generic part based on fiber-reinforced (FR) silica aerogel for thermal insulation of the exhaust tubing system-to keep the exhaust gases as hot as possible to improve the efficiency of the catalyst system-was produced via a sol-gel-based molding process in combination with a supercritical drying using scCO. A thermal conductivity of 16 mW m K was measured via a heat flow meter technique.
View Article and Find Full Text PDFIn recent years, flexible silica aerogels have gained significant attention, owing to their excellent thermal and acoustic insulation properties accompanied by mechanical flexibility. Fiber reinforcement of such aerogels results in a further enhancement of the strength and durability of the composite, while retaining the excellent insulation properties. In this paper, the influence of four different kinds of fibers within a flexible silica aerogel matrix is studied and reported.
View Article and Find Full Text PDFDue to the synergic feature of individual components in hybrid (nano)biomaterials, their application in regenerative medicine has drawn significant attention. Aiming to address all the current challenges of aerogel as a potent scaffold in bone tissue engineering application, we adopted a novel synthesis approach to synergistically improve the pore size regime and mechanical strength in the aerogel. The three-dimensional aerogel scaffold in this study has been synthesized through a versatile one-pot aqueous-based sol-gel hybridization/assembly of organosilane (tetraethyl orthosilicate) and silk fibroin (SF) biopolymer, followed by unidirectional freeze-casting of the as-prepared hybrid gel and supercritical drying.
View Article and Find Full Text PDFA detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available in the market is given and compared with the lab scale production of droplets using pipettes and syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with non-solvent induced phase separation option is then discussed in the view of making wet particles.
View Article and Find Full Text PDFAerogels of polysaccharides with chelating functions can be useful as supports in many applications because of their hosting properties. This work demonstrates a facile method for the preparation of aerogels of chitosan derivative "ureido-chitin", containing ureido functional groups. The nanofibrillar networks of "ureido-chitin" were produced by the nucleophilic addition of amine groups of chitosan with isocyanic acid prepared in situ.
View Article and Find Full Text PDFIn the past decade, biopolymer aerogels have gained significant research attention due to their typical properties, such as low density and thermal insulation, which are reinforced with excellent biocompatibility, biodegradability, and ease of functionalization. Mechanical properties of these aerogels play an important role in several applications and should be evaluated based on synthesis parameters. To this end, preparation and characterization of polysaccharide-based aerogels, such as pectin, cellulose and k-carrageenan, is first discussed.
View Article and Find Full Text PDFThe aim of this work is to develop a method to produce spherical biopolymer-based aerogel particles, which is capable for scale-up in the future. Therefore, the jet cutting method is suggested. Amidated pectin, sodium alginate, and chitosan are used as a precursor (a 1⁻3 wt.
View Article and Find Full Text PDFThe production of a new composite material embedding aramid honeycomb materials into nano-porous silica aerogels is studied. Our aim is to improve the poor mechanical strength of silica aerogels by aramid honeycombs without losing the amazing properties of the aerogels like little density and low thermal conductivity. The composite materials were prepared using two formulations of silica aerogels in combination with aramid honeycomb materials of different cell sizes.
View Article and Find Full Text PDFThis contribution aims at evaluating different synthesis procedures leading to zirconia-based aerogels. A series of undoped and yttrium-doped zirconia aerogels have been prepared via hydrolysis and condensation reaction of different alkoxy- and different inorganic salt-based precursors followed by supercritical drying. Well-established but deleterious zirconium n-propoxide (TPOZ) or zirconium n-butoxide (TBOZ) were used as metal precursors in combination with acids like nitric acid and acetic acid as auxiliary agent for the generation of non-yttrium stabilized zirconia aerogels.
View Article and Find Full Text PDFSolar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface.
View Article and Find Full Text PDFAs part of a project to study different methods for the disinfection of effluent water, the inactivation of different microorganisms (Escherichia coli, Deinococcus radiodurans and spores of Bacillus subtilis) using a combination of a photosensitizer (Rose Bengal) with simulated sunlight and oxygen was determined under various environmental conditions (temperature, pH index). In parallel, the singlet-oxygen (1O2) production was also measured under the same conditions. Whereas the vegetative cells could be inactivated much more efficiently at increased temperature and altered index of pH, the production of 1O2 remained essentially the same under these alterations.
View Article and Find Full Text PDFAqueous solutions of methamidophos (O,S-dimethyl phosphoramidothioato) are mineralised in sunlight in the presence of dispersed particles of TiO2 in a pre-industrial pilot plant. A commercial pesticide (Tamaron 50, 50% Methamidophos) is used as a model to demonstrate the application of the treatment. Total Organic Carbon (TOC) and PO4(3-) are analysed to confirm the mineralization of the contaminants.
View Article and Find Full Text PDF