Fracture healing is a multistage process characterized by inflammation, cartilage formation, bone deposition, and remodeling. Chondrocytes are important in producing cartilage that forms the initial anlagen for the hard callus needed to stabilize the fracture site. We examined the role of FOXO1 by selective ablation of FOXO1 in chondrocytes mediated by Col2α1 driven Cre recombinase.
View Article and Find Full Text PDFFOXO1 transcription factors affect a number of cell types that are important in the host response. Cell types whose functions are modulated by FOXO1 include keratinocytes in the skin and mucosal dermis, neutrophils and macrophages, dendritic cells, Tregs and B-cells. FOXO1 is activated by bacterial or cytokine stimulation.
View Article and Find Full Text PDFType 1 diabetes impairs fracture healing. We tested the hypothesis that diabetes affects chondrocytes to impair fracture healing through a mechanism that involves the transcription factor FOXO1. Type 1 diabetes was induced by streptozotocin in mice with FOXO1 deletion in chondrocytes (Col2α1CreFOXO1) or littermate controls (Col2α1CreFOXO1) and closed femoral fractures induced.
View Article and Find Full Text PDFAngiogenesis is a critical aspect of wound healing. We investigated the role of keratinocytes in promoting angiogenesis in mice with lineage-specific deletion of the transcription factor FOXO1. The results indicate that keratinocyte-specific deletion of Foxo1 reduces VEGFA expression in mucosal and skin wounds and leads to reduced endothelial cell proliferation, reduced angiogenesis, and impaired re-epithelialization and granulation tissue formation.
View Article and Find Full Text PDFEndothelin-1 (ET-1), tissue plasminogen activator (tPA), and extracellular signal-regulated kinases-mitogen activated protein kinase (ERK-MAPK) are mediators of impaired cerebral hemodynamics after fluid percussion brain injury (FPI) in piglets. Microparticles (MPs) are released into the circulation from a variety of cells during stress, are pro-thrombotic and pro-inflammatory, and may be lysed with polyethylene glycol telomere B (PEG-TB). We hypothesized that MPs released after traumatic brain injury impair hypotensive cerebrovasodilation and that PEG-TB protects the vascular response via MP lysis, and we investigated the relationship between MPs, tPA, ET-1, and ERK-MAPK in that process.
View Article and Find Full Text PDFBecause hyperbaric oxygen treatment mobilizes bone marrow derived-stem/progenitor cells by a free radical mediated mechanism, we hypothesized that there may be differences in mobilization efficiency based on exposure to different oxygen partial pressures. Blood from twenty consecutive patients was obtained before and after the 1st, 10th and 20th treatment at two clinical centers using protocols involving exposures to oxygen at either 2.0 or 2.
View Article and Find Full Text PDFIntroduction: The goals of this study were to investigate the difference in responses between a scuba dive preceded by aerobic exercise (EX) and a nonexercise control dive (CON) and to further evaluate the potential relation between venous gas emboli (VGE) and microparticles (MP). We hypothesized that exercise would alter the quantity and subtype of annexin V-positive MP and VGE.
Methods: Nineteen divers performed two dives to 18 m seawater for 41 min separated by at least 3 d, one of which was preceded by 60 min of treadmill interval exercise.
Aim: To comprehensively study hemostasis pathology and its association with the laboratory markers and mediators of inflammation in patients with metabolic syndrome (MS).
Subjects And Methods: One hundred and eleven patients with type 2 diabetes mellitus, who were diagnosed as having MS, were examined. Vascular-platelet and secondary hemostases and anticoagulant and fibrinolytic systems were evaluated, by performing the complete clinical, laboratory, and instrumental study accepted in a specialized endocrinology clinic.
Background: Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2013
We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP).
View Article and Find Full Text PDFThe study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS.
View Article and Find Full Text PDFThe study goal was to evaluate responses in humans following decompression from open-water SCUBA diving with the hypothesis that exertion underwater and use of a breathing mixture containing more oxygen and less nitrogen (enriched air nitrox) would alter annexin V-positive microparticle (MP) production and size changes and neutrophil activation, as well as their relationships to intravascular bubble formation. Twenty-four divers followed a uniform dive profile to 18 m of sea water breathing air or 22.5 m breathing 32% oxygen/68% nitrogen for 47 min, either swimming with moderately heavy exertion underwater or remaining stationary at depth.
View Article and Find Full Text PDFThis investigation was to elucidate the basis for augmentation of nitric-oxide synthesis in neutrophils exposed to hyperbaric oxygen. Hyperoxia increases synthesis of reactive species leading to S-nitrosylation of β-actin, which causes temporary inhibition of β(2) integrin adherence. Impaired β(2) integrin function and actin S-nitrosylation do not occur in neutrophils from mice lacking type-2 nitric-oxide synthase (iNOS) or when incubated with 1400W, an iNOS inhibitor.
View Article and Find Full Text PDFInert gases diffuse into tissues in proportion to ambient pressure, and when pressure is reduced, gas efflux forms bubbles due to the presence of gas cavitation nuclei that are predicted based on theory but have never been characterized. Decompression stress triggers elevations in number and diameter of circulating annexin V-coated microparticles (MPs) derived from vascular cells. Here we show that ∼10% MPs from wild-type (WT) but not inflammatory nitric oxide synthase-2 (iNOS) knockout (KO) mice increase in size when exposed to elevated air pressure ex vivo.
View Article and Find Full Text PDFThe article deals with studying the degree of increase of the von Willebrand factor and the concentration of endothelin-1 in blood plasma in the subgroups of patients with diabetes mellitus formed depending on of type of disease and presence of phenotype with affection of kidneys. The sampling of 176 patients with diabetes mellitus (65 patients with diabetes mellitus type 1, 111 patients with diabetes mellitus type II) was examined. The control group consisted of 30 healthy persons.
View Article and Find Full Text PDFObject: Microparticles (MPs), small membrane fragments shed from various cell types, have been implicated in thrombosis, inflammation, and endothelial dysfunction. Their involvement in subarachnoid hemorrhage (SAH) and the development of cerebral infarction and clinical deterioration caused by delayed cerebral ischemia (DCI) remain ill defined. The authors sought to quantify the magnitude of elevations in MPs, delineate the temporal dynamics of elevation, and analyze the correlation between MPs and DCI in patients with SAH.
View Article and Find Full Text PDFThe investigation goal was to identify mechanisms for reversal of actin S-nitrosylation in neutrophils after exposure to high oxygen partial pressures. Prior work has shown that hyperoxia causes S-nitrosylated actin (SNO-actin) formation, which mediates β(2) integrin dysfunction, and these changes can be reversed by formylmethionylleucylphenylalanine or 8-bromo-cyclic GMP. Herein we show that thioredoxin reductase (TrxR) is responsible for actin denitrosylation.
View Article and Find Full Text PDFThe goal of this study was to evaluate annexin V-positive microparticles (MPs) and neutrophil activation in humans following decompression from open-water SCUBA diving with the hypothesis that changes are related to intravascular bubble formation. Sixteen male volunteer divers followed a uniform profile of four daily SCUBA dives to 18 m of sea water for 47 min. Blood was obtained prior to and at 80 min following the first and fourth dives to evaluate the impact of repetitive diving, and intravascular bubbles were quantified by trans-thoracic echocardiography carried out at 20-min intervals for 2 h after each dive.
View Article and Find Full Text PDFStudies in a murine model have shown that decompression stress triggers a progressive elevation in the number of circulating annexin V-coated microparticles derived from leukocytes, erythrocytes, platelets, and endothelial cells. We noted that some particles appeared to be larger than anticipated, and size continued to increase for ≥24 h postdecompression. These observations led to the hypothesis that inert gas bubbles caused the enlargement and particle size could be reduced by hydrostatic pressure.
View Article and Find Full Text PDFProduction of reactive species in neutrophils exposed to hyperoxia causes S-nitrosylation of β-actin, which increases formation of short actin filaments, leading to alterations in the cytoskeletal network that inhibit β(2) integrin-dependent adherence (Thom, S. R., Bhopale, V.
View Article and Find Full Text PDFDiabetic patients undergoing hyperbaric oxygen therapies (HBO(2)T) for refractory lower extremity neuropathic ulcers exhibit more than a twofold elevation (p=0.004) in circulating stem cells after treatments and the post-HBO(2)T CD34(+) cell population contains two- to threefold higher levels of hypoxia inducible factors-1, -2, and -3, as well as thioredoxin-1 (p<0.003), than cells present in blood before HBO(2)T.
View Article and Find Full Text PDFProgressive elevations in circulating annexin V-coated microparticles (MPs) derived from leukocytes, erythrocytes, platelets, and endothelial cells are found in mice subjected to increasing decompression stresses. Individual MPs exhibit surface markers from multiple cells. MPs expressing platelet surface markers, in particular, interact with circulating neutrophils, causing them to degranulate and leading to further MP production.
View Article and Find Full Text PDFObjectives: The severity of acute carbon monoxide (CO) poisoning is often based on non-specific clinical criteria because there are no reliable laboratory markers. We hypothesized that a pattern of plasma protein values might objectively discern CO poisoning severity. This was a pilot study to evaluate protein profiles in plasma samples collected from patients at the time of initial hospital evaluation.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2009
Peroxiredoxin 6 (Prdx6), an enzyme with glutathione peroxidase and PLA2 (aiPLA2) activities, is highly expressed in respiratory epithelium, where it participates in phospholipid turnover and antioxidant defense. Prdx6 has been localized by immunocytochemistry and subcellular fractionation to acidic organelles (lung lamellar bodies and lysosomes) and cytosol. On the basis of their pH optima, we have postulated that protein subcellular localization determines the balance between the two activities of Prdx6.
View Article and Find Full Text PDF