In this paper, we demonstrate the first ever dual-period diffraction gratings that do not require electrical tuning to obtain the effect of period change. Our method allows for multiplication of the base period by proper modification of the subsequent slits of the grating. The proposed elements are fabricated by selective photopolymerization of a composite based on a nematic liquid crystal.
View Article and Find Full Text PDFIn this paper we present all-in fiber tunable devices based on specially designed and optimized high-index photonic crystal fibers filled with nematic liquid crystals. A special host microstructured optical fibers have been designed and manufactured to ensure low-loss index guiding and mode field diameter matching to SMF-28 fiber, ensuring low losses on interconnections with leading in-out FC/PC connectorized pigtails. We present four types of tunable all-fiber devices: tunable retarders with tuning range as high as 20 λ, tunable polarizers with variable axis of polarization and continuously tunable polarization dependent losses, tunable and fully controllable polarization controller and finally indeterministic depolarizer in which depolarization is caused by random thermodynamic process.
View Article and Find Full Text PDFIn this paper, two types of polymer-stabilized periodic structures created by photopolymerization of a nematic liquid crystal confined in a cylindrical structure are presented. Both types of structures were induced by nematic-isotropic phase transition in liquid crystal doped with gold nanoparticles. The first type of structure was created by stabilizing periodic phase separation at the nematic-isotropic phase transition temperature.
View Article and Find Full Text PDFIn this paper, we present our recent research results on light propagation in photonic crystal fibers (PCFs) infiltrated with a 6CHBT nematic liquid crystal (LC) doped with 2-nm gold nanoparticles (NPs) with a concentration in the range of 0.01 - 0.5% wt.
View Article and Find Full Text PDFThermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.
View Article and Find Full Text PDF