An unknown intense signal (P ) with a mean chemical shift of 5.3 ppm was observed in P MR spectra from the calf muscles of patients with the diabetic foot syndrome. The aim of the study was to identify the origin of this signal and its potential as a biomarker of muscle injury.
View Article and Find Full Text PDFMagnetic Resonance (MR) compatible ergometers are specialized ergometers used inside the MR scanners for the characterization of tissue metabolism changes during physical stress. They are most commonly used for dynamic phosphorous magnetic resonance spectroscopy (31P MRS), but can also be used for lactate production measurements, perfusion studies using arterial spin labelling or muscle oxygenation measurements by blood oxygen dependent contrast sequences. We will primarily discuss the importance of ergometers in the context of dynamic 31P MRS.
View Article and Find Full Text PDFBackground: Diets rich in fat and added sugars (especially fructose) play an important role in the pathogenesis of nonalcoholic liver disease (NAFLD), but there is only limited information on the acute effects of these nutrients on hepatic fat content (HFC).
Objectives: We therefore explored how the administration of high-fat load, glucose, fructose, and combinations thereof affects HFC measured in vivo using proton magnetic resonance spectroscopy (1H-MRS) in healthy subjects.
Methods: Ten healthy nonsteatotic male volunteers (age 38.
Background: 31P-MR spectroscopy is a technique for undertaking a comprehensive evaluation of muscle metabolism. The goal of this study was to compare patients with mild and severe lower limb ischemia measured by 31P-MR spectroscopy at rest and during exercise.
Methods: Sixteen non-diabetic mild peripheral arterial occlusive disease (PAOD) patients, 23 diabetic PAOD patients with severe ischemia and 19 healthy controls were examined by rest and dynamic 31P-MR spectroscopy with a 3T MR system equipped with an MR-compatible home-made pedal ergometer.
Aim: The standard method for assessment of effect of revascularization in patients with diabetic foot (DF) and critical limb ischemia (CLI) is transcutaneous oxygen pressure (TcPO2). Phosphorus magnetic resonance spectroscopy (31P MRS) enables to evaluate oxidative muscle metabolism that could be impaired in patients with diabetes and its complications. The aim of our study was to compare MRS of calf muscle between patients with DF and CLI and healthy controls and to evaluate the contribution of MRS in the assessment of the effect of revascularization.
View Article and Find Full Text PDFPurpose: Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers.
View Article and Find Full Text PDF