Publications by authors named "Milos Rancic"

Erbium ions embedded in crystals have unique properties for quantum information processing, because of their optical transition at 1.5 μm and of the large magnetic moment of their effective spin-1/2 electronic ground state. Most applications of erbium require, however, long electron spin coherence times, and this has so far been missing.

View Article and Find Full Text PDF

We report measurements of electron-spin-echo envelope modulation (ESEEM) performed at millikelvin temperatures in a custom-built high-sensitivity spectrometer based on superconducting micro-resonators. The high quality factor and small mode volume (down to 0.2 pL) of the resonator allow us to probe a small number of spins, down to .

View Article and Find Full Text PDF

Continued scaling of semiconductor devices has driven information technology into vastly diverse applications. The performance of ultrascaled transistors is strongly influenced by local electric field and strain. As the size of these devices approaches fundamental limits, it is imperative to develop characterization techniques with nanometer resolution and three-dimensional (3D) mapping capabilities for device optimization.

View Article and Find Full Text PDF

The detection of electron spins associated with single defects in solids is a critical operation for a range of quantum information and measurement applications under development. So far, it has been accomplished for only two defect centres in crystalline solids: phosphorus dopants in silicon, for which electrical read-out based on a single-electron transistor is used, and nitrogen-vacancy centres in diamond, for which optical read-out is used. A spin read-out fidelity of about 90 per cent has been demonstrated with both electrical read-out and optical read-out; however, the thermal limitations of the former and the poor photon collection efficiency of the latter make it difficult to achieve the higher fidelities required for quantum information applications.

View Article and Find Full Text PDF