Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images. Here, for the first time, to our knowledge, we extend those measurements to high-speed imaging, which can be readily applied to analyze currents and magnetic field dynamics in circuits on a microscopic scale. To overcome detector acquisition rate limitations, we designed an optical streaking nitrogen vacancy microscope to acquire two-dimensional spatiotemporal kymograms.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) is a wide-band gap van der Waals material able to host light-emitting centers behaving as single photon sources. Here, we report the generation of color defects in hBN nanosheets dispersed on different kinds of substrates by thermal treatment processes. The optical properties of these defects have been studied using microspectroscopy techniques and far-field simulations of their light emission.
View Article and Find Full Text PDFNuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links.
View Article and Find Full Text PDFWe propose a label-free biosensor concept based on the charge state manipulation of nitrogen-vacancy (NV) quantum color centers in diamond, combined with an electrochemical microfluidic flow cell sensor, constructed on boron-doped diamond. This device can be set at a defined electrochemical potential, locking onto the particular chemical reaction, whilst the NV center provides the sensing function. The NV charge state occupation is initially prepared by applying a bias voltage on a gate electrode and then subsequently altered by exposure to detected charged molecules.
View Article and Find Full Text PDFThe negatively charged nitrogen-vacancy ([Formula: see text]) center shows excellent spin properties and sensing capabilities on the nanoscale even at room temperature. Shallow implanted [Formula: see text] centers can effectively be protected from surface noise by chemical vapor deposition (CVD) diamond overgrowth, i.e.
View Article and Find Full Text PDFBiocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs.
View Article and Find Full Text PDFIn recent years, fluorescent nanodiamond (fND) particles containing nitrogen-vacancy (NV) centers gained recognition as an attractive probe for nanoscale cellular imaging and quantum sensing. For these applications, precise localization of fNDs inside of a living cell is essential. Here we propose such a method by simultaneous detection of the signal from the NV centers and the spectroscopic Raman signal from the cells to visualize the nucleus of living cells.
View Article and Find Full Text PDFA straightforward and sensitive approach is presented for contact-free thermal sensing with high spatial resolution based on optically detected magnetic resonance (ODMR) of negatively charged nitrogen-vacancy (NV) centers in fluorescent nanodiamonds. The frequency-jump procedure is a frequency modulation technique between two discrete frequencies at the inflection points at both sides of the NV ODMR resonance, which yields a signal proportional to the temperature shift over a wide temperature range. The approach is generic and is demonstrated by time-dependent measurements of the local temperature at different spots on a microelectronics circuit under electrical switching operation of one of the devices.
View Article and Find Full Text PDFNitrogen-vacancy (NV) centers in diamond have become an important instrument for quantum sensing and quantum information science. However, the readout of NV spin state requires bulky optical setups, limiting fabrication of miniaturized compact devices for practical use. Here we realized photoelectrical detection of magnetic resonance as well as Rabi oscillations on a single-defect level.
View Article and Find Full Text PDFRobust devices for chronic neural stimulation demand electrode materials which exhibit high charge injection ( ) capacity and long-term stability. Boron-doped diamond (BDD) electrodes have shown promise for neural stimulation applications, but their practical applications remain limited due to the poor charge transfer capability of diamond. In this work, we present an attractive approach to produce BDD electrodes with exceptionally high surface area using porous titanium nitride (TiN) as interlayer template.
View Article and Find Full Text PDFWe propose the use of a diamond waveguide structure to enhance the sensitivity of magnetometers relying on the detection of the spin state of nitrogen-vacancy ensembles in diamond by infrared optical absorption. An optical waveguide structure allows for enhanced optical path-lengths avoiding the use of optical cavities and complicated setups. The presented design for diamond-based magnetometers enables miniaturization while maintaining high sensitivity and forms the basis for magnetic field sensors applicable in biomedical, industrial and space-related applications.
View Article and Find Full Text PDFNucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions.
View Article and Find Full Text PDFCu(In,Ga)Se based solar cells have reached efficiencies close to 23%. Further knowledge-driven improvements require accurate determination of the material properties. Here, we present refractive indices for all layers in Cu(In,Ga)Se solar cells with high efficiency.
View Article and Find Full Text PDFLead phthalocyanine (PbPc) thin films of 5 and 50 nm have been deposited on hydrogen and oxygen terminated single crystal diamond (SCD) using organic molecular beam deposition. Atomic force microscopy and X-ray diffraction (XRD) studies showed that PbPc grown on the hydrogen terminated SCD forms layers with a high degree of crystallinity, dominated by the monoclinic (320) orientation parallel to the diamond surface. The oxygen terminated diamond led to a randomly oriented PbPc film.
View Article and Find Full Text PDFHere we report the fabrication of nanofibre-based organic phototransistors (OPTs) using preformed poly(3-hexylthiophene) (P3HT) nanofibres. OPT performance is analysed based on two important parameters: photoresponsivity R and photosensitivity P. Before testing the devices as OPTs, the normal organic field-effect transistor (OFET) operation is characterized, revealing a surface-coverage-dependent performance.
View Article and Find Full Text PDFDiamond nanoparticles (DNPs) are very attractive for biomedical applications, particularly for bioimaging. The aim of this study was to evaluate the impact of DNPs on neural cancer cells and thus to assess the possible application of DNPs for these cells imaging. For this purpose, the neuroblastoma SH-SY5Y cell line was chosen.
View Article and Find Full Text PDFA novel simple and versatile synthetic strategy is developed for the surface modification of boron-doped diamond. In a two-step procedure, polyethyleneimine is adsorbed on the hydrogenated diamond surface and subsequently modified with a model light-harvesting donor-π-bridge-acceptor molecule (coded P1). The sensitized diamond exhibits stable cathodic photocurrents under visible-light illumination in aqueous electrolyte solution with dimethylviologen serving as an electron mediator.
View Article and Find Full Text PDFThe aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment.
View Article and Find Full Text PDFNanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies.
View Article and Find Full Text PDFUsing a variety of proliferating cell types, it was shown that the surface of nanocrystalline diamond (NCD) provides a permissive substrate for cell adhesion and development without the need of complex chemical functionalization prior to cell seeding. In an extensive series of experiments we found that, unlike proliferating cells, post-mitotic primary neurons do not adhere to bare NCD surfaces when cultured in defined medium. These observations raise questions on the potential use of bare NCD as an interfacing layer for neuronal devices.
View Article and Find Full Text PDFUsing IR spectroscopy, high-pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene-diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high-pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy.
View Article and Find Full Text PDFThe hardness and virtual incompressibility of diamond allow it to be used in high-pressure anvil cell. Here we report a new way to generate static pressure by encapsulating single-crystal diamond with graphene membrane, the latter is well known for its superior nano-indentation strength and in-plane rigidity. Heating the diamond-graphene interface to the reconstruction temperature of diamond (~1,275 K) produces a high density of graphene nanobubbles that can trap water.
View Article and Find Full Text PDFA novel approach for preparation of ultra-bright fluorescent nanodiamonds (fNDs) was developed and the thermal and kinetic optimum of NV center formation was identified. Combined with a new oxidation method, this approach enabled preparation of particles that were roughly one order of magnitude brighter than particles prepared with commonly used procedures.
View Article and Find Full Text PDFHybrid graphene oxide (GO)/poly(3-hexylthiophene-2,5-diyl) (P3HT) sheets are assembled via π-π interaction and carefully isolated from the nonreacted precursors. The mutual influence of the two phases can be sharply manifested in this layer-to-layer configuration because it is undiluted by excess of one phase. To investigate the optical properties of the hybrid and possible synergistic interactions, we applied photothermal deflection spectroscopy (PDS) and pump-probe techniques.
View Article and Find Full Text PDFHighly sensitive, multicomponent broadband photodetector devices are made from PbSe/graphene/TiO(2). TiO(2) and PbSe nanoparticles act as light harvesting photoactive materials from the UV to IR regions of the electromagnetic spectrum, while the graphene acts as a charge collector for both photogenerated holes and electrons under an applied electric field.
View Article and Find Full Text PDF