Publications by authors named "Milos L Kalezic"

Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately.

View Article and Find Full Text PDF

Numerous alpine newt (Ichthyosaura alpestris) populations from the Balkans, representing all the previously established phylogeographic lineages, were studied for variations in various morphological characteristics (body size and shape, skull qualitative traits and number of trunk vertebrae). Here, we present a decoupling of morphological and mtDNA phylogeographic substructuring in the alpine newt on the Balkan Peninsula. In sharp contrast to other European newts (Triturus spp.

View Article and Find Full Text PDF

This study deals with the ontogenetic and evolutionary aspects of integration patterns in the limbs of crested newt species, which, like most amphibians, have a biphasic life history with two morphologically distinct stages (larval vs. juvenile and adult) that occupy different environments (aquatic vs. terrestrial).

View Article and Find Full Text PDF

In this article, we explore the possible influences of the developmental and functional relationships between skeletal elements on the pattern of morphological integration in the adult skull of the alpine newt. Like many tailed amphibians, the alpine newt has a biphasic life cycle, which implies the possibility that two distinct sets of constraints on development and function of the cranial skeleton may act at different times. We study how trait covariation, resulting from processes early in development, affects patterns of covariation at the adult stage.

View Article and Find Full Text PDF

Background: Sexual size dimorphism (SSD) is a key evolutionary feature that has been studied in many organisms. In a wide range of species, this pattern is more complex because of polymorphism within each sex. However, it is not known whether the magnitude and direction of SSD could be affected by alternative developmental trajectories within sexes.

View Article and Find Full Text PDF